

Campus Networking Workshop

Layer-2 Network Design

Layer 2 Concepts

- Layer 2 protocols basically control access to a shared medium (copper, fiber, electromagnetic waves)
- Ethernet is the *de-facto* standard today
 - -Reasons:
 - Simple
 - Cheap
 - Manufacturers keep making it faster

Ethernet Functions

- Source and Destination identification
 - -MAC addresses
- Detect and avoid frame collisions
 - -Listen and wait for channel to be available
 - If collision occurs, wait a random period before retrying
 - This is called CASMA-CD: Carrier Sense Multiple Access with Collision Detection
 - -1Gbps links and above are always full duplex

Evolution of Ethernet Topologies

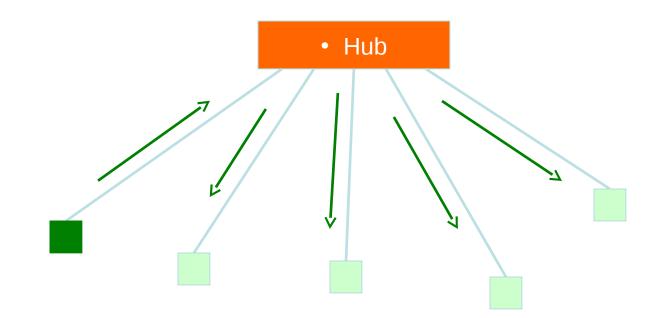
• Bus

-Everybody on the same coaxial cable

- Star
 - -One central device connects every other node
 - First with hubs (repeated traffic)
 - Later with switches (bridged traffic)
 - -Structured cabling for star topologies standardized

•Switched Star Topology Benefits

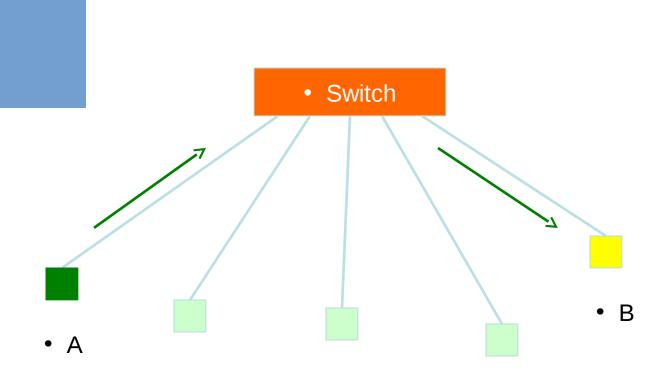
- It's modular:
 - -Independent wires for each end node
 - -Independent traffic in each wire
 - A second layer of switches can be added to build a hierarchical network that extends the same two benefits above
 - -ALWAYS DESIGN WITH MODULARITY IN MIND


•Hub

- Receives a frame on one port and sends it out <u>every other port, always</u>.
- Collision domain spans the whole hub or chain of hubs
- Traffic ends up in places where it's not needed

- A frame sent by one node is always sent to every other node.
- Hubs are also called "repeaters" because they just "repeat"
- what they hear.

Switch


- *Learns* the location of each node by looking at the source address of each incoming frame, and builds a *forwarding table*
- **Forwards** each incoming frame only to the port where the destination node is
 - Reduces the collision domain
 - Makes more efficient use of the wire
 - Nodes don't waste time checking frames not destined to them

•Switch

- Forwarding Table
- Address
 Port
- AAAAAAAAA 1 AA
- BBBBBBBBBB 5 BB

Switches and Broadcast

- A switch broadcasts some frames:
 - –When the destination address is not found in the table
 - -When the frame is destined to the broadcast address (FF:FF:FF:FF:FF:FF)
 - –When the frame is destined to a multicast ethernet address
- So, switches do not reduce the broadcast domain!

Switch vs. Router

- Routers more or less do with IP packets what switches do with Ethernet frames
 - A router looks at the IP packet destination and checks its *forwarding table* to decide where to forward the packet
- Some differences:
 - -IP packets travel inside ethernet frames
 - -IP networks can be logically segmented into *subnets*
 - Switches do not usually know about IP, they only deal with Ethernet frames


Switch vs. Router

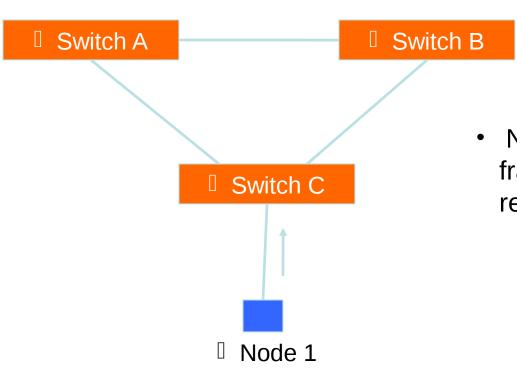
- Routers do not forward Ethernet broadcasts. So:
 - -Switches reduce the <u>collision domain</u> -Routers reduce the <u>broadcast domain</u>
- This becomes *really* important when trying to design hierarchical, scalable networks that can grow sustainably

Traffic Domains

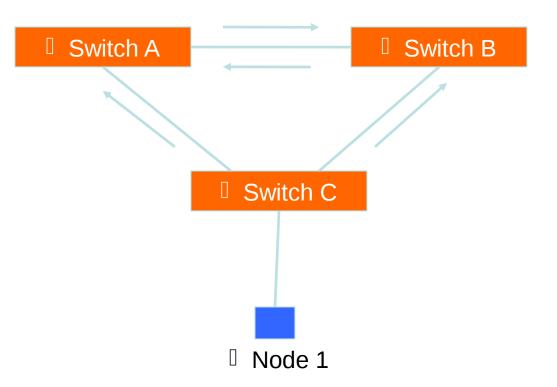
•Traffic Domains

- Try to eliminate collision domains –Get rid of hubs!
- Try to keep your broadcast domain limited to no more than 250 simultaneously connected hosts
 - -Segment your network using routers

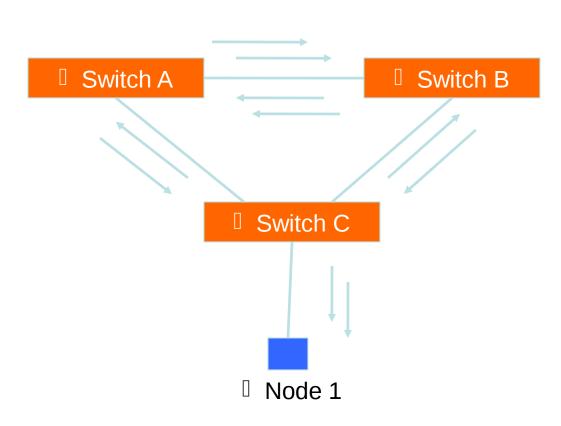
- When there is more than one path between two switches
- What are the potential problems?



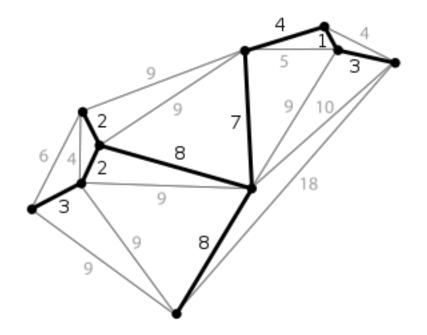
- If there is more than one path between two switches:
 - -Forwarding tables become unstable
 - Source MAC addresses are repeatedly seen coming from different ports
 - -Switches will broadcast each other's broadcasts
 - All available bandwidth is utilized
 - Switch processors cannot handle the load



 Node1 sends a broadcast frame (e.g. an ARP request)



• Switches A, B and C broadcast node 1's frame out every port


- But they receive each other's broadcasts, which they need to forward again out every port!
- The broadcasts are amplified, creating a broadcast storm

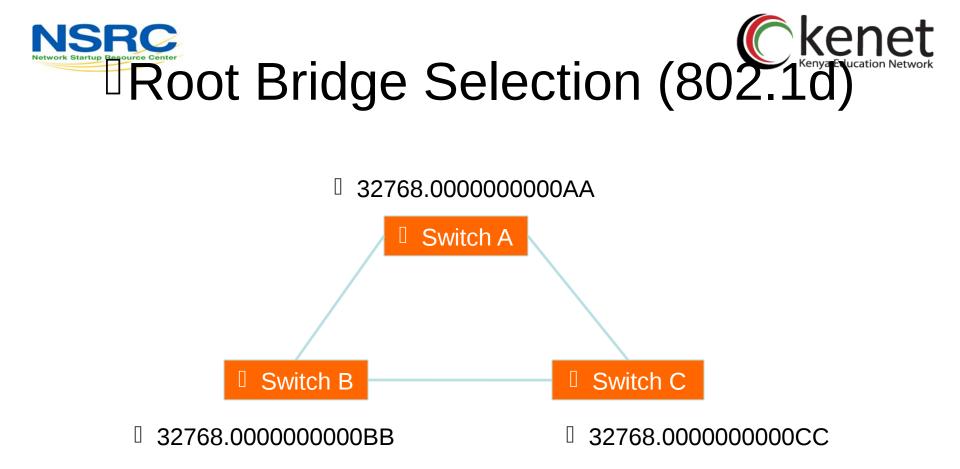
- But you can take advantage of loops! –Redundant paths improve resilience when:
 - A switch fails
 - Wiring breaks
- How to achieve redundancy without creating dangerous traffic loops?

What is a Spanning Tree

- "Given a connected, undirected graph, a *spanning tree* of that graph is a subgraph which is a tree and connects all the vertices together".
- A single graph can have many different spanning trees.

• The purpose of the protocol is to have bridges dynamically discover a subset of the topology that is loop-free (a tree) and yet has just enough connectivity so that where physically possible, there is a path between every switch

- Several flavors:
 - -Traditional Spanning Tree (802.1d)
 - -Rapid Spanning Tree or RSTP (802.1w)
 - -Multiple Spanning Tree or MSTP (802.1s)


- Switches exchange messages that allow them to compute the Spanning Tree
 - -These messages are called BPDUs (Bridge Protocol Data Units)
 - -Two types of BPDUs:
 - Configuration
 - Topology Change Notification (TCN)

- First Step:
 - -Decide on a point of reference: the *Root Bridge*
 - –The election process is based on the Bridge ID, which is composed of:
 - <u>The Bridge Priority</u>: A two-byte value that is configurable
 - <u>The MAC address</u>: A unique, hardcoded address that cannot be changed.

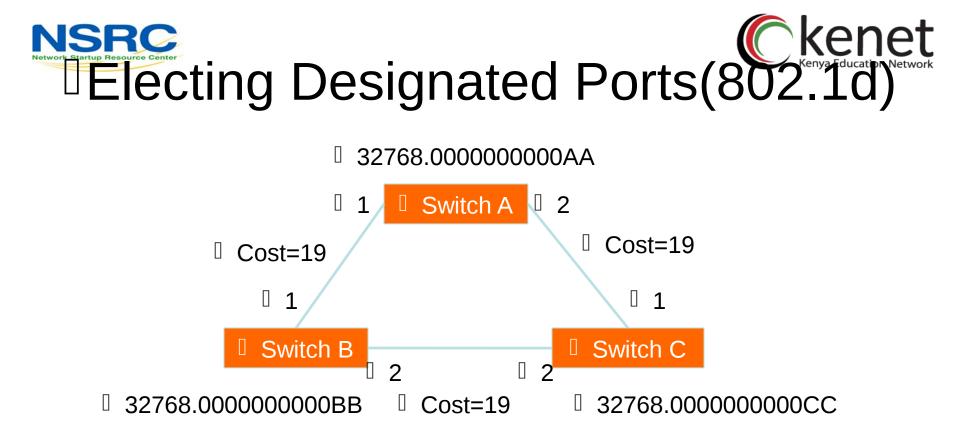
- Each switch starts by sending out BPDUs with a Root Bridge ID equal to its own Bridge ID –*I am the root!*
- Received BPDUs are analyzed to see if a <u>lower</u> Root Bridge ID is being announced
 - If so, each switch replaces the value of the advertised Root Bridge ID with this new lower ID
- Eventually, they all agree on who the Root Bridge is

- All switches have the same priority.
- Who is the elected root bridge?

- Now each switch needs to figure out where it is in relation to the Root Bridge
 - -Each switch needs to determine its *Root Port*
 - -The key is to find the port with the lowest **Root Path Cost**
 - The cumulative cost of all the links leading to the Root Bridge

 Root Path Cost is the accumulation of a link's Path Cost and the Path Costs learned from neighboring Switches.
 It answers the question: How much does it cost to reach the Root Bridge through this port?

1.Root Bridge sends out BPDUs with a Root Path Cost value of 0


- 2.Neighbor receives BPDU and adds port's Path Cost to Root Path Cost received
- 3.Neighbor sends out BPDUs with new cumulative value as Root Path Cost4.Other neighbors down the line keep adding in the same fashion

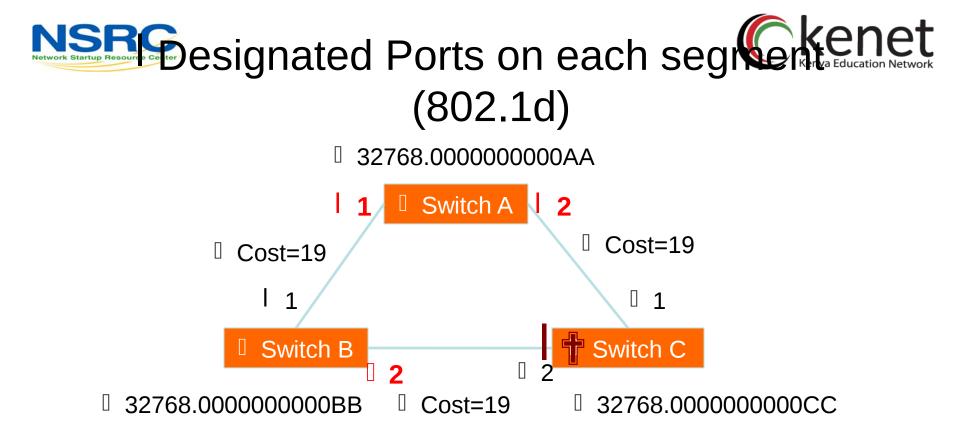
- On each switch, the port where the lowest Root Path Cost was received becomes the *Root Port*
 - This is the port with the best path to the Root Bridge

Electing Designated Potskenet (802.1d)

- OK, we now have selected root ports but we haven't solved the loop problem yet, have we – The links are still active!
- Each network segment needs to have only one switch forwarding traffic to and from that segment
- Switches then need to identify one *Designated Port* per link
 - The one with the lowest cumulative Root Path Cost to the Root Bridge

• Which port should be the Designated Port on each segment?

Electing Designated Potskenet (802.1d)


- Two or more ports in a segment having identical Root Path Costs is possible, which results in a tie condition
- All STP decisions are based on the following sequence of conditions:
 - -Lowest Root Bridge ID
 - -Lowest Root Path Cost to Root Bridge
 - -Lowest Sender Bridge ID
 - -Lowest Sender Port ID

Blocking a port

- Any port that is not elected as either a Root Port, nor a Designated Port is put into the Blocking State.
- This step effectively breaks the loop and completes the Spanning Tree.

 Port 2 in Switch C is then put into the *Blocking State* because it is neither a Root Port nor a Designated Port

- Disabled
 - -Port is shut down
- Blocking
 - -Not forwarding frames
 - -Receiving BPDUs
- Listening
 - -Not forwarding frames
 - -Sending and receiving BPDUs

- Learning
 - -Not forwarding frames
 - -Sending and receiving BPDUs
 - -Learning new MAC addresses

• Forwarding

- -Forwarding frames
- -Sending and receiving BPDUs
- -Learning new MAC addresses

- Switches will recalculate if:
 - -A new switch is introduced
 - It could be the new Root Bridge!
 - –A switch fails
 - –A link fails

- Using default STP parameters might result in an undesired situation
 - -Traffic will flow in non-optimal ways
 - An unstable or slow switch might become the root
- You need to plan your assignment of bridge priorities carefully

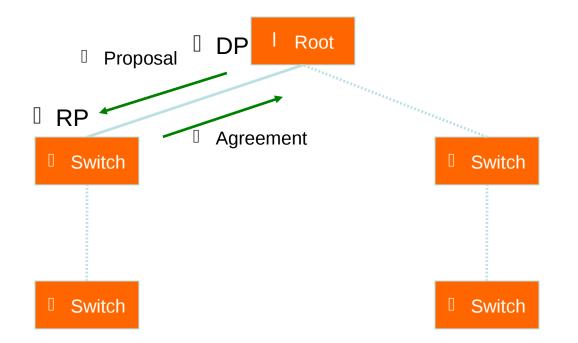
- Some vendors have included features that protect the STP topology:
 - -Root Guard
 - -BPDU Guard
 - -Loop Guard
 - -UDLD
 - -Etc.

- Enable spanning tree even if you don't have redundant paths
- Always plan and set bridge priorities —Make the root choice deterministic —Include an alternative root bridge
- If possible, do not accept BPDUs on end user ports
 - -Apply BPDU Guard or similar where available

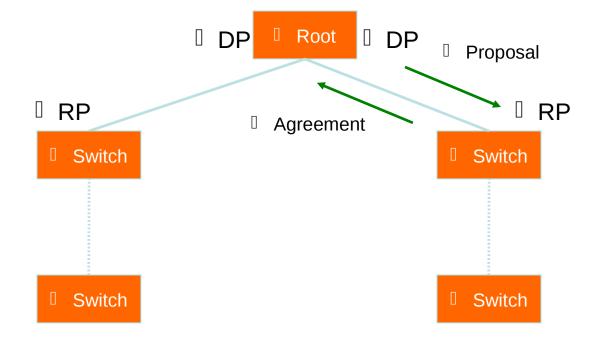
- Moving from the Blocking state to the Forwarding State takes at least 2 x *Forward Delay* time units (~ 30 secs.)
 This can be annoying when connecting end user stations
- Some vendors have added enhancements such as *PortFast*, which will reduce this time to a minimum for edge ports
 - Never use PortFast or similar in switch-to-switch links
- Topology changes typically take 30 seconds too — This can be unacceptable in a production network

- Convergence is much faster

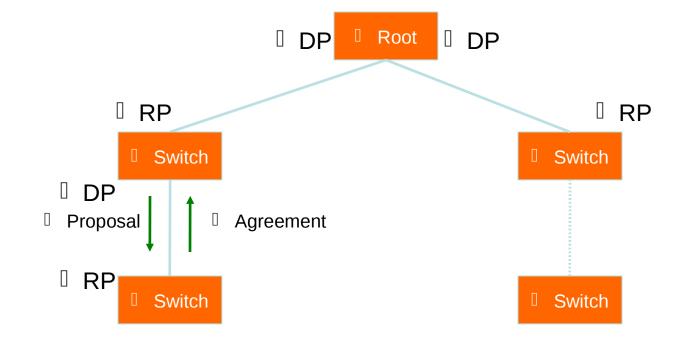
 Communication between switches is more
 interactive
- Edge ports don't participate
 - Edge ports transition to forwarding state immediately
 - –If BPDUs are received on an edge port, it becomes a non-edge port to prevent loops

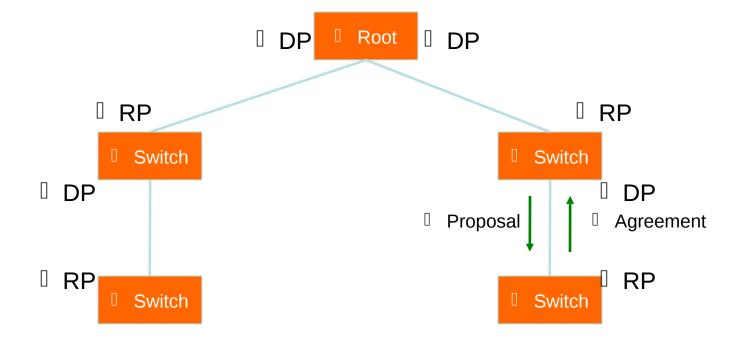

Rapid Spanning Tree (802.1W)

- Defines these port roles:
 - -Root Port (same as with 802.1d)
 - -Alternate Port
 - A port with an alternate path to the root
 - –Designated Port (same as with 802.1d)
 - -Backup Port
 - A backup/redundant path to a segment where another bridge port already connects.



- Synchronization process uses a handshake method
 - After a root is elected, the topology is built in cascade, where each switch proposes to be the designated bridge for each point-to-point link
 While this happens, all the downstream switch
 - links are blocking


Rapid Spanning Tree (802.1W)

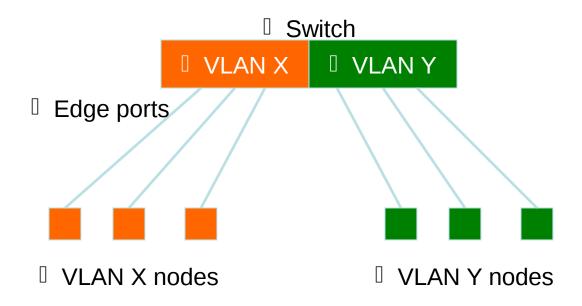


- Prefer RSTP over STP if you want faster convergence
- Always define which ports are edge ports

Questions?

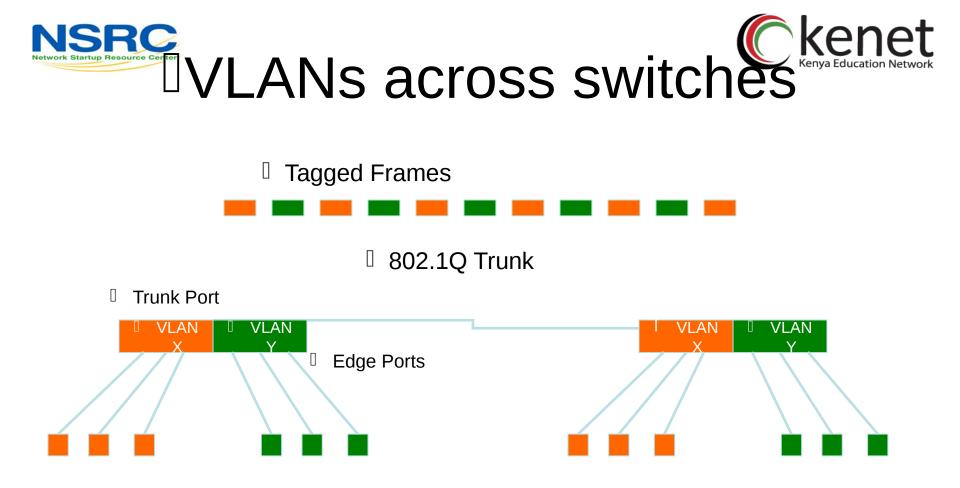
- Allow us to split switches into separate (virtual) switches
- Only members of a VLAN can see that VLAN's traffic
 - -Inter-vlan traffic must go through a router
- Allow us to reuse router interfaces to carry traffic for separate subnets

 –E.g. sub-interfaces in Cisco routers



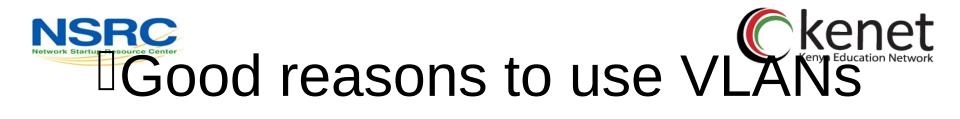
- 2 VLANs or more within a single switch
- *Edge ports*, where end nodes are connected, are configured as members of a VLAN
- The switch behaves as several virtual switches, sending traffic only within VLAN members

Local VLANs


- Two switches can exchange traffic from one or more VLANs
- Inter-switch links are configured as *trunks*, carrying frames from all or a subset of a switch's VLANs
- Each frame carries a *tag* that identifies which VLAN it belongs to

- The IEEE standard that defines how ethernet frames should be *tagged* when moving across switch trunks
- This means that switches from *different vendors* are able to exchange VLAN traffic.

^[] This is called "VLAN Trunking"



Tagged vs. Untagged

- Edge ports are not tagged, they are just "members" of a VLAN
- You only need to tag frames in switch-toswitch links (trunks), when transporting multiple VLANs
- A trunk can transport both tagged and untagged VLANs
 - As long as the two switches agree on how to handle those

- You can no longer "just replace" a switch –Now you have VLAN configuration to maintain and backup Eiglel to charie in a constant of the second seco
 - -Field technicians need more skills
- You have to make sure that all the switchto-switch trunks are carrying all the necessary VLANs
 - Need to keep in mind when adding/removing
 VLANs

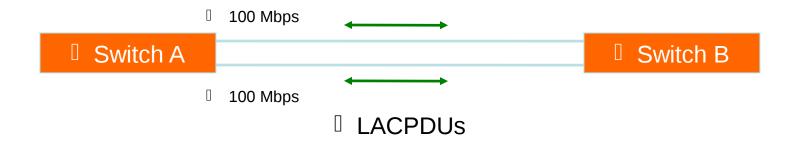
- You want to segment your network into multiple subnets, but can't buy enough switches
 - -Hide sensitive infrastructure like IP phones, building controls, etc.
- Separate control traffic from user traffic –Restrict who can access your switch management address

- Because you can, and you feel cool $\ensuremath{\mathbb{Z}}$
- Because they will completely secure your hosts (or so you think)
- Because they allow you to extend the same IP network over multiple separate buildings
 - -This is actually very common, but a bad idea

- Extending a VLAN to multiple buildings across trunk ports
- Bad idea because:
 - -Broadcast traffic is carried across all trunks from one end of the network to another
 - -Broadcast storm can spread across the extent of the VLAN, and affect all VLANS!
 - -<u>Maintenance and troubleshooting nightmare</u>

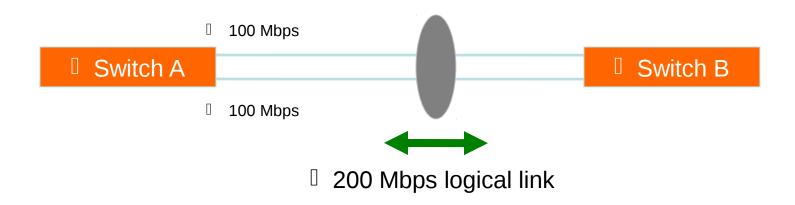
Link Aggregation

- Also known as port bundling, link bundling
- You can use multiple links in parallel as a single, logical link
 - -For increased capacity
 - -For redundancy (fault tolerance)
- LACP (Link Aggregation Control Protocol) is a standardized method of negotiating these bundled links between switches



LACP Operation

LACP Operation



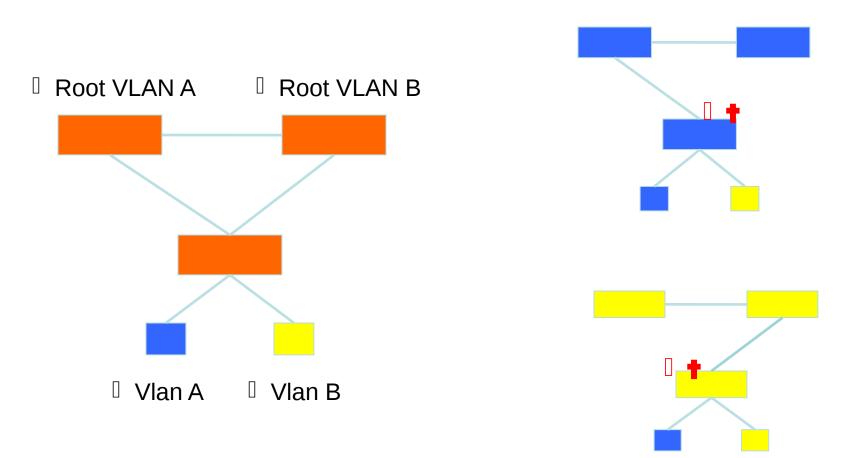
- Switches A and B are connected to each other using two sets of Fast Ethernet ports
- LACP is enabled and the ports are turned on
- Switches start sending LACPDUs, then negotiate how to set up the aggregation

LACP Operation

- The result is an aggregated 200 Mbps logical link
- The link is also fault tolerant: If one of the member links fail, LACP will automatically take that link off the bundle, and keep sending traffic over the remaining link

NDISTibuting Traffic In Bundled Links

- Bundled links distribute frames using a hashing algorithm, based on:
 - Source and/or Destination MAC address
 - Source and/or Destination IP address
 - Source and/or Destination Port numbers
- This can lead to unbalanced use of the links, depending on the nature of the traffic
- Always choose the load-balancing method that provides the most distribution


Questions?

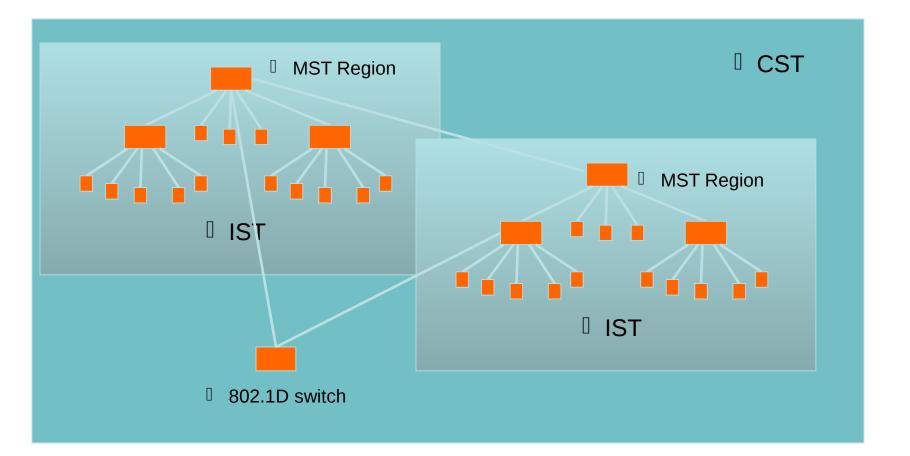
Multiple Spanning Treekenet (802.1s)

- Allows separate spanning trees per VLAN group
 - Different topologies allow for load balancing between links
 - -Each group of VLANs are assigned to an "instance" of MST
- Compatible with STP and RSTP

Multiple Spanning Treekenet (802.1s)

Multiple Spanning Treekenet (802.1s)

- MST Region
 - -Switches are members of a region if they have the same set of attributes:
 - MST configuration name
 - MST configuration revision
 - Instance-to-VLAN mapping
 - -A digest of these attributes is sent inside the BPDUs for fast comparison by the switches
 - One region is usually sufficient


 CST = Common Spanning Tree

 In order to interoperate with other versions of Spanning Tree, MST needs a common tree that contains all the other islands, including other

MST regions

- IST = Internal Spanning Tree
 - -Internal to the Region, that is
 - -Presents the entire region as a single virtual bridge to the CST outside

- MST Instances
 - -Groups of VLANs are mapped to particular Spanning Tree instances
 - -These instances will represent the alternative topologies, or forwarding paths
 - -You specify a root and alternate root for each instance

Transforming education through ICT

- Design Guidelines
 - Determine relevant forwarding paths, and distribute your VLANs equally into instances matching these topologies
 - Assign different root and alternate root switches to each instance
 - -Make sure all switches match region attributes
 - Do not assign VLANs to instance 0, as this is used by the IST

- Minimum features:
 - -Standards compliance
 - -Encrypted management (SSH/HTTPS)
 - -VLAN trunking
 - -Spanning Tree (RSTP at least)
 - -SNMP
 - At least v2 (v3 has better security)
 - Traps

- Other recommended features: –DHCP Snooping
 - Prevent end-users from running a rogue DHCP server
 - Happens a lot with little wireless routers (Netgear, Linksys, etc) plugged in backwards
 - Uplink ports towards the legitimate DHCP server are defined as "trusted". If DHCPOFFERs are seen coming from any untrusted port, they are dropped.

- Other recommended features:
 - -Dynamic ARP inspection
 - A malicious host can perform a man-in-the-middle attack by sending gratuitous ARP responses, or responding to requests with bogus information
 - Switches can look inside ARP packets and discard gratuitous and invalid ARP packets.

- Other recommended features:
 - -IGMP Snooping:
 - Switches normally flood multicast frames out every port
 - Snooping on IGMP traffic, the switch can learn which stations are members of a multicast group, thus forwarding multicast frames only out necessary ports
 - Very important when users run Norton Ghost, for example.

- Enable SNMP traps and/or syslog
 - -Collect and process in centralized log server
 - Spanning Tree Changes
 - Duplex mismatches
 - Wiring problems
- Monitor configurations
 - -Use RANCID to report any changes in the switch configuration

- Collect forwarding tables with SNMP
 - Allows you to find a MAC address in your network quickly
 - You can use simple text files + grep, or a web tool with DB backend
- Enable LLDP (or CDP or similar)
 - -Shows how switches are connected to each other and to other network devices

Documentation

- Document where your switches are located
 - -Name switch after building name
 - E.g. building1-sw1
 - -Keep files with physical location
 - Floor, closet number, etc.
- Document your edge port connections
 - –Room number, jack number, server name

Transforming education through [CT

Thank You

www.kenet.or.ke Jomo Kenyatta Memorial Library, University of Nairobi P. O Box 30244-00100, Nairobi.