

Introduction to Network Monitoring and Management

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Objectives

Introducing Core Concepts and Terminology

- The NOC: Consolidating Systems
- Network Monitoring and Management
- What and Why we Monitor
- Uptime Expectations and Calculations
- Baseline Performance and Attack Detection
- What and Why we Manage
- Network Monitoring and Management Tools
- Network Monitoring and Management 2.0

NOC: Consolidating NMM NOC = Network Operations Center

- Coordination of tasks, handling of network related incidents (ticketing system)
- Status of network and services (monitoring tools)
- •Where the tools are accessed
- •Store of Documentation (wiki, database,
- repository ==> network documentation
 tool(s))

NOC: Consolidating NMM

NOC Location

- •NOC is an organizational concept
- •Does not need to be a place, or even a single server
- Remote / Distributed NOC is valid with OOB Management(remotely controlling & managing critical IT assets & network equipment securely)

Network Monitoring & Management Monitoring

Monitoring

• Check the status of a network

Management

• Processes for successfully operating a network

Monitoring Systems & Services

Systems Routers Switches Servers APs

Services DNS HTTP/s SMTP SNMP ICMP

What and Why we Monitor?

- Are Systems and Services Reachable?
- Are they Available?
- What's their Utilisation?
- What's their Performance
- Round-trip times, throughput
- Faults and Outages
- Have they been Configured or Changed?
- Are they under Attack?

What and Why we Monitor?

- •Know when there are problems before our customers!
- •Track resource utilisation, and bill our customers
- To Deliver on Service Level Agreements (SLAs)What does management expect?
 - •What do customers expect?
 - •What does the rest of the Internet expect?
- •To prove we're delivering
 - •Have we achieved Five Nines? 99.999%
- •To ensure we meet SLAs in the future

Uptime Expectations

- •What does it take to deliver 99.9% uptime?
 •Only 44 minutes of downtime a month!
 •Need to shut down one hour a week?
 •That's only 99.4% uptime ((732-4)/732 = .9945355...)
 •Maintenance might be negotiated in SLAs
- •What does it mean that the network is up?
 - •Does it work at every location? Every host?
 - •Is the network up if it works at the Boss's desk?
 - •Should the network be reachable from the Internet?

Establish a Baseline

- •Monitoring can be used to Establish a Baseline Baseline = What's normal for your network?
- •Typical latency across paths
- •Jitter across paths
- •Load on links
- •Percent Resource Utilisation
- •Typical amounts of noise
 - •Network scans & random attacks from the Internet
 - •Dropped packets
 - •Reported errors or failures

Detecting Attacks

- Deviation from baseline can mean an attack
- Are there more flows than usual?
- Is the load higher on some servers or services?
- Have there been multiple service failures?

Example of Anomaly-Based DDoS Detection Using NetFlow and Arbor Networks

Kenya Education Network

What do we Manage?

•Asset management: What equipment have we deployed?

- •What software is it running
- •What's its configuration (hardware & software)
- •Where is it installed
- •Do we have spares?
- •Incident management: fault tracking and resolution
- •Change management: Are we satisfying user requests?
 - •Installing, moving, adding, or changing things
- •Staff management

Why do we Manage?

- •To ensure we meet business requirements for service level,
- incident response times etc.
- •To make efficient use of our resources (including staff)
- •To learn from problems and make improvements to
- reduce future problems
- •To plan for upgrades, and make purchasing decisions with sufficient lead time

Network Monitoring Tools

•Availability: Nagios

•for servers, services, routers, switches, environment

Reliability: Smokeping
connection health, rtt, service response time, jitter

Performance: LibreNMS traffic, port utilisation, cpu, RAM, disk, processes

Network Management Tools

- •Ticket Systems: RT
 - •Manage provisioning & support
- •Configuration Management: RANCID, Oxidized
 - •Track router configurations
- •Network Documentation: Netdot, Netbox, GLPI
 - •Inventory, Location, Ownership of Network

Other great alternatives*

NET MANAGEMENT	NETFLOW / IPFIX / SFLOW	LOGS / SIEM	DOCUMENTATION
Cacti	ElastiFlow	Beats	diagrams.net
LibreNMS	Filebeat	Elasticsearch	GLPI
Nagios/Icinga	NfSen	Fluentd/fluent-bit	InvenTree
Netdata	ntop	Loki	IPplan
OpenNMS	pmacct	OSSEC/Wazuh	Netbox
Prometheus	SECURITY / NIDS	Sagan	Netdisco
Sensu	Nessus	TICKETING	phpIPAM
Zabbix	Prelude	OSticket	Snipe-IT
PERFORMANCE	Snort	OTRS	CHANGE MGMT
perfSONAR	Suricata	RT	Oxidized
Smokeping	Zeek	Trac	RANCID

What about "NMM 2.0?"

Older practices:

Newer practices

include:

• Classic polling model using snmp, service query or pings

• Coarse data collection (5 minute intervals typically)

- "Streaming Telemetry" (network data)
- Pull methodology using http(s), agent-based or map to snmp
- Time series databases (large) often NoSQL based
- Collectors and parsers using metrics, gauges and counters

What about "NMM 2.0?"

Some tools you may have heard mentioned:

- ELK, TICK, Kafka, Prometheus Stacks
- Grafana, Inf<mark>luxDB</mark>, MongoDB
- Beats, Elasticsearch, fluentd, Kibana, Loki, etc...

Don't go all at once! Start Small & Scale

NMM Review

- Network Monitoring & Management
- What & Why we Monitor
- Uptime Expectations & Calculations
- Baseline Performance & Attack Detection
- Network Attack Detection
- •What & Why we Manage
- •Network Monitoring & Management Tools•The NOC:

Consolidating Systems•NMM 2.0

Acknowledgments & Partners

UNIVERSITY OF OREGON

THANK YOU

www.kenet.or.ke

Jomo Kenyatta Memorial Library, University of Nairobi P. O Box 30244-00100, Nairobi. 0732 150 500 / 0703 044 500 support@kenet.or.ke / jotuya@kenet.or.ke