 BMO Training

Getting started with Linux
10110101208

11100011088 Peter Muia
1100011050
101011000110

Day 1: Modules

Linux overview

Command Line Interface or the “CLI”
Permissions

Editors

Ubuntu Linux and more commands

g ~ bdPE

Module 1: Linux Overview

Unix vs. LiInux

Are they the same?

Yes, at least in terms of operating system interfaces
Linux was developed independently from Unix

Unix is much older (1969 vs. 1991)
Scalability and reliability

Both scale very well and work well under heavy load
Flexibility <

Both emphasize small, interchangeable components
Manageability

Remote logins rather than GUI

Scripting is integral
Security

Due to modular design has a reasonable security model

What’s running Linux?

®90% of the supercomputer TOP500,
including all TOP 10

® Half of the world's 10 most reliable hosting
companies

® The Internet of Things (to some extent)

® Maybe your smart phone?
Android Is based on Linux

The Unix/Linux System

Launch processes

User interaction (terminal)
Job control

{scripting)

Background processing
Non-interactive
{ne terminal)

/\ - SHELLS
|If | KEH@
>/

APPS File management
L Editors
Compilers
'O (+ terminals) Network tools
Memory management (VM) —
Interruptions
Scheduling / Timesharing
Networking Eat Resources :-)

(uid / gid)

Kernel

The "core" of the operating system

Device drivers
- communicate with your hardware
- block devices, character devices, network devices,
pseudo devices (/dev/null)

Filesystems
- organize block devices into files and directories

Memory management
Timeslicing (multitasking)
Networking stacks - esp. TCP/IP
Enforces security model

Shells

Command line interface for executing programs
* Windows equivalent: command.com or command.exe
Choice of similar but slightly different shells
* sh: the "Bourne Shell"
* csh: the "C Shell". Not standard, but includes command
history
* bash: the "Bourne-Again Shell"
* Others: ksh, tcsh, zsh

User processes

The programs that you choose to run
Frequently-used programs tend to have short
cryptic names

- "1s" = list files

- "cp" = copy file

- "rm" = remove (delete) file

Lots of stuff included in most base systems

- editors, compilers, system admin tools
Lots more stuff available to install too

- Using the Debian/Ubuntu repositories

System processes

Programs that run in the background; also
known as "daemons"” ==> 1*

Examples:

cron: executes programs at certain times of day
syslogd: takes log messages and writes them to files
Inetd: accepts incoming TCP/IP connections and starts
programs for each one

sshd: accepts incoming logins

sendmail (or other MTA daemon like Postfix): accepts
Incoming mail

* "Sparky” from the FreeBSD world

Security model

Numeric IDs
user id (uid O = "root", the superuser)

group id
supplementary groups

Mapped to hames
/etc/passwd, /etc/group (plain text files)

Suitable security rules enforced

e.g. you cannot kill a process running as a different user,
unless you are "root"

Filesystem security

Each file and directory has three sets of
permissions
- For the file's uid (user)
- For the file's gid (group)
- For everyone else (other)

Each set of permissions has three bits: rwx
- File: r=read, w=write, x=execute

- Directory: r=list directory contents, w=create/delete
files within this directory, x=enter directory
(executable)

Filesystem security

The permission flags are read as follows left to
right:
-rw-r--r-- for regular files,
drwxr -xr-x for directories

Any questions?

Standard filesystem layout

/bin essential binaries

/boot kernel and boot support

/dev device access nodes

/proc pseudo-filesystem with

config/system info

/etc configuration data
/etc/default package startup defaults
/etc/1init.d startup scripts

/home/username user's “home” directory

/11ib essential libraries

/sbin essential sysadmin tools

/tmp temporary files

/usr programs & appl. data

/var changing files (1logs,

E-mall messages,
gqueues, ..)

Don't confuse the the “root account” (/root) with the “root” (“/”) partition.

More filesystem details

/usr
/usr/bin
/usr/11b
/usr/sbin
/usr/share
/usr/src
/usr/local/...

/var
/var/log
/var/mail
/var/run
/var/spool
/var/tmp

binaries

libraries

sysadmin binaries

misc application data
kernel source code

3rd party applications
not installed with apt

log files
maillboxes
process status
queue data files
temporary files

Log files (a few examples)

/var
/var/log
/var/log/apache2
/var/log/apache2/access. log
/var/log/apache3/error.log
/var/log/auth. log
/var/log/boot.log
/var/log/dmesg
/var/log/kern. log
/var/log/mail.info
/var/log/mail.err
/var/log/mail. log
/var/log/messages
/var/log/mysql
/var/log/syslog

Log file: who & what’s doing what

The most critical place to solve problems

* System messages, including:
- Problems
- Security issues
- Configuration errors
- Access issues

* Service messages, including:
- Same as above

When something does not work...

...Look In your log files first!

Partitioning considerations

* Single large partition or multiple?

* A single partition is flexible, but a rogue
program can fill it up...

* Multiple partitions provides a more
“protected” approach, but you may need to
resize later, on older filesystems, or without a
“Volume Manager”

- Is Ivar big enough? /tmp?
- How much swap should you define?

Note...

* Partitioning Is just a logical division

* If your hard drive dies, most likely everything
will be lost.

* |f you want data security, then you need to set
up mirroring or RAID with a separate drive.

Remember, “rm -rf /” on a mirror will erase everything on both
disks [

Data Security <==> Backup

Idev

Virtual files pointing to hardware or other

/dev/sda = the first harddisk
(SCSI/SATA/SAS or IDE)

Dynamically created /dev entries

e.g. when you plug in a new USB device

pseudo-devices:

/dev/null
/dev/random

Sample Linux File System

How Does Linux boot?

The BIOS loads and runs the MBR:

- The Master Boot Record points to a default
partition, or lets you select the boot partition

* MBR code then loads the boot loader, such as GRUB

* Boot loader reads configuration parameters (/boot)
presents the user with options on how to boot system

* kernel is loaded and started, filesystems are mounted,
modules are loaded

* Init(8) process is started
* system daemons are started

http://en.wikipedia.org/wiki/Linux_startup process

Packages & Exercises

We'll reinforce some of these concepts using
exercises...

Right now please connect to your virtual Linux
machine using SSH:

* sshnsrc@197.136.7.1
* Pass: password
- # virsh console hostxx.ws.nsrc.org

- You will be given a username and password

Packages & Exercises

We’ll run a few commands to get started:

e 1Is (list files / directories)
* pwd (current working directory)

Module 2: Command Line Interface

The format of a command

command [options] parameters

“Traditionally, UNIX command-line options consist of a dash,
followed by one or more lowercase letters. The GNU utilities
added a double-dash, followed by a complete word or
compound word.”

Two very typical examples are:
-h

--help

and

-V

--version

Command parameters

The parameter is what the command acts on.
Often there are multiple parameters.

In Unix UPPERCASE and lowercase for both
options and parameters matter.

Spaces are critical

“-- help” is wrong.

|

“--help” is right.

Some command examples

Let's start simple:
Display a list of files:
1s
Display a list of files in a long listing format:
1s -1

Display a list of all files in a long listing format
with human-readable file sizes:

1s -alh

Some command examples cont.

Some equivalent ways to do “1s -alh”:
1s -1lah
ls -1 -a -h
ls -1 -all --human-readable

Note that there Is no double-dash option for “-1".
You can figure this out by typing:

man 1s
Or by typing:
1s --help

Spot the deliberate mistake. Why does it work?

Where's the parameter?

We typed the “1s” command with several options,
but no parameter. Do you think “1s” uses a
parameter?

What is the parameter for “1s -1"?
It is “.” -- our current directory.
“1ls -17and “1ls -1 .” are the same.

A disconcerting Linux feature

If a command executes successfully there is no
output returned from the command execution.
this Is normal.
That Is, If you type:

cp filel file2

The result is that you get your command prompt
back. Nothing means success.

Let's give this a try...

A disconcerting Linux feature

Try doing the following on your machine:

$ cd [cd = change dir]
$ touch filel [touch = create/update]
$ cp filel file2 [cp = copy]

* The “$” indicates the command prompt for a
normal user.

* A“#" usually means you are the root user.

Using pipes

In Unix it Is very easy to use the result of
one command as the input for another.

To do this we use the pipe symbol “|”. For
example:

ls -1 /sbin | sort

What will this command do?

Stopping command output

Stopping commands with continuous output:
Terminate foreground program: CTRL+C

$ ping yahoo.com

PING yahoo.com (67.195.160.76): 56 data bytes

64 bytes from 67.195.160.76: icmp_seq=0 ttl=45 time=221.053 ms
64 bytes from 67.195.160.76: icmp_seq=1 ttl=45 time=224.145 ms

NC 0 here press CTRL + C
Terminate paging like “less <filename>"

$ less /etc/passwd

sysadm:x:1000:1000:System Administrator,,,:/home/sysadm:/bin/bash
postfix:x:104:113::/var/spool/postfix:/bin/false
mysql:x:105:115:MySQL Server,,,:/var/lib/mysql:/bin/false

(END) 0 press the “q” key

Proper command line use

The command line in Unix IS much more
powerful than what you may be used to In
Windows. You can...

...easlly edit long commands
...find and recover past commands
...quickly copy and paste commands.

...auto-complete commands using the
tab key (in bash shell).

Find and recover past
commands

As noted on the previous slide. Use:

$ history | grep “command string”
Find command number in resulting list.

Execute the command by typing:
$ 'number

So, to find any command you typed “many”
commands ago you can do:

$ history | grep command

Find and recover past
commands

For last few commands use the up-arrow.

Don’t re-type a long command if you just
typed it.

Instead use the up arrow and adjust the
command.

Copy and paste commands

In Unix/Linux once you highlight something it is
already in your copy buffer.

To copyl/paste in Linux/Unix do:

* Highlight text with left mouse cursor. It is
now copied (like ctrl-c in Windows).

* Move mouse/cursor where you want (any
window), and press the middle mouse
button. This is paste (like ctrl-v).

In Windows / Mac use the traditional ctrl-c / ctrl-v

Auto-complete commands with tab

Very, very, very powerful

“The tab key is good”, “the tab key is my
friend”, “press the tab key”, “press it again”
- This Is your mantra.

Tab works In the bash shell. Note, the root
user might not use the bash shell by
default.

Auto-complete commands with tab

Core concept:

Once you type something unigue, press
TAB. If nothing happens, press TAB twice.
If text was unique text will auto-complete.
A command will complete, directory

name, file name, command parameters will
all complete.

If not unique, press TAB twice. All possibilities
will be displayed.

Works with file types based on command!

Auto-completion

We’ll do this now:

$ cat /etc (TAB twice quickly)
$ cat /etc/netw (TAB)
$ cat /etc/network/in (TAB)

Viewing Files (part I)

Several ways to view a file:

1. cat <filename>
2. more <filename
3. less <filename>

e cat Is short for conCATenate
* “lessismore”

Obtaining “help”

To get help explaining commands you can do:

- man <command>
- <command> --help

man stands for “man”ual.
More on “man”

- Man man

Your mission

Pay close attention to options and parameters.

Use “man command” or “command --help”to
figure out how each command works.

Use command line magic to save lots and lots
and lots and lots of time.

A command acts upon its parameters based on
the options you give to the command...

Module 3: Permissions

Goal

Understand the following:

— The Linux / Unix security model
— How a program is allowed to run

—Where user and group information is
stored

— Detaills of file permissions

Users and Groups

Linux understands Users and Groups
A user can belong to several groups

A file can belong to only one user and one
group at a time

A particular user, the superuser “root” has extra
privileges (uid = “0” in /etc/passwd)

Only root can change the ownership of a file

Users and Groups cont.

User information in /etc/passwd

Password info isin /etc/shadow

Group information isin /etc/group
/etc/passwd and /etc/group divide data

fields using “
/etc/passwd:

joeuser:x:1000:1000:Joe User,,, :/home/joeuser:/bin/bash
/etc/group:
joeuser:x:1000:

A program runs...

A program may be run by a user, when the
system starts or by another process.

Before the program can execute the kernel
Inspects several things:

* |Is the file containing the program accessible to the user
or group of the process that wants to run it?

* Does the file containing the program permit execution
by that user or group (or anybody)?

* In most cases, while executing, a program inherits the
privileges of the user/process who started it.

A program in detail

When we type:
1s -1 /usr/bin/top

We'll see:
-rwxr-xr-x 1 root root 68524 2011-12-19 07:18 /usr/bin/top

What does all this mean?

-r-xXr-xr-x 1 root root 68524 2011-12-19 07:18 /usr/bin/top

File Name
--- Modification Time/Date
Fommmmmmmm oo Size (in bytes
oo e e mememeoo Group
S owner
o o e e e i “link count”

L e e File Permissions

Group

The name of the group that has permissions in addition to the file's owner.
owner

The name of the user who owns the file.
File Permissions

The first character is the type of file. A "-" indicates a regular (ordinary) file. A
"d” indicate a directory. Second set of 3 characters represent the read, write, and
execution rights of the file's owner. Next 3 represent the rights of the file's group, and
the final 3 represent the rights granted to everybody else.

(Example modified from http://www.linuxcommand.org/1ts0030.php)

Access rights

Files are owned by a user and a group
(ownership)

Files have permissions for the user, the group,
and other

“other” permission Is often referred to as “world

The permissions are Read, Write and Execute
(r, w, X)

The user who owns a file is always allowed to
change its permissions

Some special cases

When looking at the output from “1s -1"In the
first column you might see:

d directory

regular file

symbolic 1link

Unix domaln socket
named pipe

character device file
block device file

OO »”W =1

Some special cases cont

In the Owner, Group and other columns you
might see:

S = setuid when in Owner column]
S = setgid when in Group column]
£t = stic ky bit 'when at end]

Some References

http://www. tuxfiles.org/linuxhelp/filepermissions.html

http://www.cs.uregina.ca/Links/class-info/330/Linux/linux.html
http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

File permissions

There are two ways to set permissions when
using the chmod command:

Symbolic mode:

testfile has permissions of -r--r--r--

u g o
$ chmod g+x testfile ==> -r--r-Xr--
$ chmod u+wx testfile ==> -rwXr-Xr--
$ chmod ug-x testfile ==> -rw--r--r—

u=user, g=group, o=other (world)

File permissions cont.

Absolute mode:

We use octal (base eight) values represented like this:

Letter Permission Value

r read 4
W write 2
X execute 1

none 0]

For each column, User, Group or Other you can set
values from O to 7. Here is what each means:

= mmm = ==X = -W- 3=
- WX

4= r-- 5= r-X 6= rw- /=

File permissions cont.

Numeric mode cont:

Example index.html file with typical permission values:

$ chmod 755 index.html

$ 1s -1 index.html
-rwxr-xr-x 1 root wheel 0 May 24 06:20 index.html

$ chmod 644 index.html

$ 1s -1 index.html
-rw-r--r-- 1 root wheel 0 May 24 06:20 index.html

Inherited permissions

Two critical points:

1.The permissions of a directory affect whether
someone can see Iits contents or add or
remove files in it.

2.The permissions on a file determine what a
user can do to the data in the file.

Example:

If you don't have write permission for a directory, then
you can't delete a file in the directory. If you have write
access to the file you can update the data in the file.

Module 4: Editors

Goals

* Be able to edit a file using vi

* Use some of vi's more advanced
features

* Begin to understand the “language” of
configuration files

* Use alternate editors: ee,
Joe, pico, nano, emacs,
Xxemacs, gedit, etc.

vi Philosophy

* It's available!

* Wait, what was that? Oh yeah, it's
available!

* It's has some very powerful features.

* |t's ubigquitous in UNIX and Linux
(visudo, vipw, vigr, etc.)

* Not that hard to learn after initial
learning curve.

Why is vi “so hard to use”?

Like all things it's not really — once you
are used to how It works.

The critical vi concept:
1. vi has two modes

2. These modes are Insert and
command

| et's see how we use these...

vi command and insert modes

Swapping modes

- When you open a file in vi you are in
command mode by default.

- If you wish to edit the file you need to switch
to insert mode first.

- To exit insert mode press the ESCape key.

- If you get used to this concept you are
halfway done to becoming a competent vi
user.

vi Insert mode

Two common ways to enter insert mode
upon opening a file include:

- Press the “I” key to start entering text
directly after your cursor.

- Press the “0” key to add a new line below
you cursor and to start adding text on the
new line.

- Remember, to exit insert mode press the
ESCape key at any time.

vi command mode

Many, many commands in vi, but some
of the most common and useful are:

- Press “x” to delete a character at a time.

- Press “dd” quickly to press the line you are on.

- Press “/”, and text to search for and press
<ENTER>.

* Press “n” to find the next occurrence of text.

* Press “N” to find previous occurrences of
text.

Saving a file or “How to exit
vi"

1. In vi press the ESCape key to verify you are In
command mode.

2. Depending on what you want to do press:

W — write the file to disk

wW(q - write the file to disk, then quit

:q - guit the file (only works if no changes)
:q! — guit and lose any changes made

;w1 — override r/o file permission if you are

owner or root and write the file to disk.

:wq! - override r/o file permission if you are
owner or root and write the file to disk
and quit.

For all commands which start with colon, you need to hit Enter at end

Speed-Up your config file editing!

1. In vi press the ESCape key to verify you are in
command mode.

2. To search for the first occurrence of something:
* /string - press <ENTER>
* “n” — press “n” for each following occurrence

* “N” — press “N” for each previous occurrence
3. To replace all occurrences of a string in a file:
* :%s/o0ld_string/new_string/g

« To replace all occurrences of a string in a file
(confirming each one):

1. %s/0ld _string/new_string/gc

Speed things up some more!

1. In vi press the ESCape key to verify you are in
command mode.

2. Go directly to a specific line number
 :num - press <ENTER>. If num=99, go to line 99
3. Go to start/end of a line
1. press Home or press End on your keyboard
4. Go to bottom of a file (in command mode):
. press "G"
e Undo the last change you made (in command mode)

* press “u”

Configuration file patterns

There are patterns to how configuration
files work:

* The most common comment
character Is “#”.

In some files you'll see “/ */" or
“II".

*There are a few others, but they are
less common.

Editing configuration files cont.

Some configuration files have lots of
comments and few directives. Others are
the opposite.

Blocks of configuration may be indicated In
a programmatic manner, 1.e.:

<VirtualHost *>

<SubSection>

directive
directive
</SubSection>

</VirtualHost>

Editing configuration files cont.

Another standard is to do the following:
comment

comment

default setting=off

To change the default do:

default setting=on

Editing configuration files cont.

Things to watch out for:
* Spaces
* Quotes and single quotes: “directive” or
'directive’
* Caps or CamelCase syntax
* Localhost="myhost”
* LocalHost="myhost”
* Line end indicator, e.g. ":" or ";"
* New-line or continuation character “\".

Other editors

ee
- ESC brings up the editor menu

- Cursors work as you expect

jed

- F10 brings up the editor menu

- Cursors work as you expect

joe

- Ctrl-k-h brings up the editor menu
- Ctrl-c aborts

- Cursors work as you expect

Conclusion

VI's most confusing feature Is that it works in
two modes and you must switch between
them.

Questions?

Startup

Services

scripts

In /etc/init.d/ (System V)
In /etc/init/ (Ubuntu 12.04 LTS and Upstart)

NOTE! Upon install services run!

Control

INg services

* UpcC
e Sto

ate-rc.d (default method)
n/Start/Restart/Reload/Status Services

service <Service> <Action>

or, “old school”

/etc/1nit.d/<service> <action>

Runlevels

As Linux boots it executes service startup
using links.

Based on your “runlevel” determines what
services will start.

Traditional levels are used like this:
- runlevel 1: single user mode (emergency mode)
- runlevel 2: multi-user mode (No Desktop)
- runlevel 5. multi-user mode (Desktop)

With Ubuntu We Actually Do...

What happens at each runlevel?

* init 1 0 Links in /etc/rcl.d are executed.
Login as root user only.
Minimal file system access.

e init 2-51 Links In /etc/rc5.d are executed.
Gul Is started If installed.

Day-to-day working state.
- Ubuntu runs at “runlevel 2”
- Other Linux, with Desktop, run at “runlevel 5”
- This is largely semantics

Special Runlevels

Runlevel 0: Halt the system
Runlevel 6: Reboot the system

Runlevel 1: Single user mode. No network.
NoO services. System Recovery.

You must be at the machine console or have Out-of-Band
(OoB) access to your machine to use Runlevel 1.

Packages vs. Source

Make and GCC
* Not installed by default. Why?
* 30,000'ish packages are available

e Install from source is “not clean” in the Ubuntu
world.

* To install ability to compile C code:

apt-get install build-essential

Root account Access

* Use of the root account Is discouraged.

* sudo Is used to access root privileges
from general user account instead.

* You can get around this very easily.

Should you run as root?
Your decision.

Accessing root account

Set root user password:
* Login as general user
* sudo -s (Opens a root shell in bash)
* passwd (Set a root password)

Should you do this?

Security hole!

* Ubuntu allows root user access via SSH by
default. Setting the root user password opens
exposes this vulnerabillity.

See what’s running

Check for a process by name
—ps auxwww | grep apache

Stop the process by PID (Process ID). From above listing:
- sudo kill 10629 (why this one?)
- Sudo kill -9 10629 (force stop if hung)

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

