

SSH and keys

Network Startup Resource Center
www.nsrc.org

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

Passwords are bad!

● A large proportion of security failures are due to
passwords
– Users choose poor passwords
– Users write them down or share them
– Passwords can be guessed or brute-forced
– Passwords can be sniffed or key-logged
– People hate forced password changes and

password complexity tests, and will work around
them

SSH and system administration

● SSH gives you remote command-line access to
systems

● Therefore a very attractive target for attackers
● Traffic is encrypted, which at least makes it

hard to sniff passwords off the network
– Much better than telnet

● But in addition, SSH allows you to use
cryptographic keys instead of passwords

Using crypto keys with SSH

1. Generate a Private/Public key pair

2. Copy the public key onto each of the systems
you want to be able to log into

– It goes into $HOME/.ssh/authorized_keys

3. Log in with ssh, using your private key to prove
your identity to the other system, instead of a
password

User authentication with keys

Out
of

Band
Private

/home/xxx/.ssh/
authorized_keys

Public

Public

Connect

User proves they possess
the matching private key

Generating a key pair

● This is a one-time operation
● For Windows/putty: use puttygen.exe

● For Linux and OSX: use ssh-keygen
● There are three different key types currently: rsa,

ecdsa, ed25519
– ecdsa and ed25519 are newest and fastest, rsa is more

widely compatible
– If you need to use RSA, choose a key length of 2048 or

3072 bits (e.g. -t rsa -b 2048)
● You get a private key and a related public key

OpenSSH public key looks like this

● One very long line of text

ssh-rsa AAAAB3NzaC1..... you@yourmachine

Key type Key data Label
(identifier)

● Safe for copy-paste (but beware line wrap)
● puttygen has a different native format but can

also export the above format

Understand the difference!

● Your private key is like the Crown Jewels
● Your public key is like a photograph of the

Crown Jewels
● Which of these would you be happy to send via

the postal service? :-)
● Never give your private key to anyone else
● Never send your private key via E-mail

– Should you need to transfer it, do so via a secure
channel like scp or sftp

Keeping your private key safe

● Keep it on the machine where it was generated
– usually your laptop
– plus a secure backup, e.g. USB key in a safe

● Protect it with a strong passphrase
● The key is actually stored encrypted on your

hard disk; the passphrase decrypts it
● So an attacker would need both to steal the key

file and know your passphrase
– "2-factor authentication": something you have, and

something you know

Disabling passwords over SSH

● Once you have key authentication working, you
can disable fallback to password auth

editor /etc/ssh/sshd_config

PasswordAuthentication no
ChallengeResponseAuthentication no

PermitRootLogin without-password
–- or --
PermitRootLogin no

service ssh restart

Man-in-the-middle attacks

● How do you know you did not actually connect
to someone else, who is decrypting your traffic
and re-encrypting it to the remote host?

;qfhhlqwcwiefxweix iw
xfenowixfuewg2384

xehlhxn j;ijf ure hq
ewioihbyugi’owef;glgu

Host keys

● Solution: the host you are connecting to, also
has its own key

● The host proves its own identity to you each
time you connect

● The first time you connect, you will be shown
the host's "fingerprint" (hash of public key)
– If you've ever used SSH, even with passwords, you

will have seen this prompt
● Future connections will check that the same

host key is seen

Host key verification

● If later there is a man-in-the-middle, on
connection your ssh client will see the MITM's
key instead of the host's key

● It won't match, you will get an error and the
connection is dropped

● Questions:
– What happens if you reinstall the host's OS?
– What effect might this have on your users?
– How are you going to deal with it?

Questions?

● Now do the exercise: SSH with public key
authentication

SSH Agent

● Having to enter your passphrase every time you
log in is tedious

● However there is a simple solution to this: the
SSH Agent

● Once you have decrypted your private key once
with your passphrase, the Agent keeps the
decrypted key in RAM

● Subsequent logins don't prompt you at all
● This makes SSH + keys very convenient!

Installing SSH agent

● For Windows/putty: download pageant.exe
– Start it
– Select your private key file
– Enter your passphrase

● OSX: already has it
● Linux with Unity/Gnome/KDE: already has it

Multi-hop authentication

● Sometimes it is necessary to ssh into host X,
and then ssh from host X to host Y
– e.g. due to network ACLs
– or because host Y is on a private IP address
– or because you are running some sysadmin tool on

host X which needs to log in to host Y

ssh ssh

host X host Y

Agent forwarding

● You may be tempted to copy your private key
from your laptop to host X, but DON'T!

● There is a better way: turn on Agent Forwarding
when you connect to host X

● Host Y will try to authenticate from host X, and
host X will relay the request back to the origin

ssh ssh

Private

Summary

● SSH + key is very secure
– Disable password authentication to get max benefit

● SSH + key + agent is very convenient
– Type passphrase just once at start of day
– No need to type passwords each time you login
– No need to regularly change passwords across

many hosts
– Agent forwarding permits multi-hop logins

● You need to deploy this!

Questions?

● Now do the exercise: SSH with agent

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

