
5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 1/17

Configuring Loki
Network Monitoring & Management

Loki is a scalable log storage engine which is simple to install and run. It proves an API for adding
and querying logs, and can be queried via a Grafana web interface.

You are going to work with your classmates to configure the following logging pipeline:

(devices) ----> rsyslog ----> promtail ----> loki

All the commands in this sheet can be run as “root”. Use sudo -s to get a root shell if necessary.

Start loki
Loki and promtail have been pre-installed on your campus server instance
(srv1.campusX.ws.nsrc.org).

ONE of the users in your group should log into your srv1 instance and start loki:

systemctl enable loki # start on future boots

systemctl start loki # start now

journalctl -eu loki # check for no errors during startup

You can check it is running by making a query to its API
(https://github.com/grafana/loki/blob/master/docs/api.md) :

curl localhost:3100/ready; echo

It should respond with “Ready”, but it may take a minute or two before it gets into that state.

Ingesting logs
The tool “promtail” can be used to pick up logs and forward them to loki. It supports reading logs
from:

syslog (framed TCP)
local logfiles (e.g. Apache logs)
journald

The configuration we have provided (in /etc/loki/promtail.yaml) listens for syslog messages
on TCP port 5140.

Again, ONE user in your group should do the following:

https://github.com/grafana/loki/blob/master/docs/api.md
https://github.com/grafana/loki/blob/master/docs/api.md

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 2/17

systemctl enable promtail # start on future boots

systemctl start promtail # start now

journalctl -eu promtail # check for no errors during startup

Now we need to configure rsyslog on srv1 to forward to promtail. Create a file
/etc/rsyslog.d/25-promtail.conf with the following contents:

. action(type="omfwd" protocol="tcp"

target="127.0.0.1" port="5140"

Template="RSYSLOG_SyslogProtocol23Format"

TCP_Framing="octet-counted")

(Note that *.* matches messages of all facility and severity, so we will forward both router logs
and srv1’s own system logs to loki)

Restart rsyslog and check for errors:

systemctl restart rsyslog

journalctl -eu rsyslog

Now send a test message:

logger "testing 123"

You should see that this still appears in the files that rsyslog itself writes:

grep testing /var/log/syslog

However, hopefully it has also been sent via promtail to loki. To check this, we need to perform
some queries.

Querying
This part can be done by everyone in the group.

The command-line tool for querying loki is called “logcli”. Log into srv1 and type “logcli” by itself to
get some basic help.

Every log message is categorised using one or more “labels”. Assuming that at least one log
message has been ingested, we should be able to query for labels now. Try this command:

logcli labels

Note that the first line of logcli output is the API URL that it is communicating with. The remainder
are the labels which exist in the log index. Hopefully there will be labels “host”, “facility”, “severity”.

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 3/17

If not, see “Troubleshooting” below.

To check what different values of this label loki has seen, run this:

logcli labels host

In other words, this is the list of all the hosts which loki has seen messages from. Hopefully you’ll
see “srv1” here - if not, see “troubleshooting” below. (Again, the first line is just the URL that the
query used)

Now you can create a log query using logQL. The simplest query is just to show all log messages
with a given label value:

logcli query '{host="srv1"}'

You should now see some log messages. Notice how each line starts with a timestamp and a list of
labels. If there are any labels which are the same on all the messages shown, they are extracted
as “common labels” to reduce clutter.

logcli by default will show you the last 30 matching logs over the last hour. There are flags
available to change this:

logcli query '{host="srv1"}' --limit=10 --since=2h

Troubleshooting
If you are not able to see any logs, here are some things to check:

Check that services are running

systemctl status loki

systemctl status promtail

systemctl status rsyslog

Check for errors in service logs

journalctl -eu loki

journalctl -eu promtail

journalctl -eu rsyslog

Run tcpdump on “localhost” socket

rsyslog->promtail and promtail->loki communicate on localhost (127.0.0.1) so you can check
this using tcpdump:

tcpdump -i lo -nnA -s0

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 4/17

Now in another window generate a log message

logger "testing 123"

Do you see any connection on tcp port 5140 (rsyslog to promtail), and/or port 3100 (promtail
to loki)?

Using LogQL
Here are some examples you can try of LogQL
(https://github.com/grafana/loki/blob/master/docs/logql.md) , loki’s log query language.

You can select messages which match multiple labels simultaneously:

logcli query '{host="srv1",severity="notice"}'

You can filter for messages which contain a given string:

logcli query '{host="srv1"} |="test"'

Multiple filter conditions can be chained: you will get messages which match all the conditions
simultaneously. Here you will see messages which contain the string “test” and contain the string
“123”.

logcli query '{host="srv1"} |="test" |="123"'

Or for messages which do not contain a given string:

logcli query '{host="srv1"} !="test"'

For more advanced uses, use regular expression operators with ~ instead of = . For example:

severity label is "warning", "error" or "critical"

logcli query '{severity=~"warning|error|critical"}'

message contains "test" or "done", but does not contain

"plugins" or "alerts"

logcli query '{host="srv1"} |~"test|done" !~"plugins|alerts"'

Live tailing
“Live tailing” lets you see logs as they arrive in real time. Run this command:

https://github.com/grafana/loki/blob/master/docs/logql.md
https://github.com/grafana/loki/blob/master/docs/logql.md

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 5/17

logcli query '{host="srv1"}' -t

Now login to another console and type:

logger boom

Go back to the original console where logcli is running, and the message should appear.

Aggregated logs
If you have already done the rsyslog exercise, then your network device logs will already be
arriving at srv1 - and therefore should also be arriving in loki. Can you see them?

Hints:

Check which label values you have for the “host” label
Check which label values you have for the “facility” label (remembering that you configured
devices to send messages with facility “local0”)
Query logs for a specific device, or query all logs with facility “local0”

If you need any help, please ask your instructor. Remember that you’ll only see logs which arrived
after you configured rsyslog to talk to promtail/loki, so if necessary you can login to one of your
devices and make a config change, to force it to send some logs.

Grafana
Grafana can serve as a web interface to loki, including LogQL and live tailing.

Start Grafana
ONE of the users in your group should start the grafana server on srv1:

systemctl enable grafana-server # start on future boots

systemctl start grafana-server # start now

journalctl -eu grafana-server # check for no errors during

startup

Configure Grafana
ONE of the users in your group should do the following configuration.

Login to the Grafana interface at http://oob.srv1.campusX.ws.nsrc.org/grafana
(http://oob.srv1.campusX.ws.nsrc.org/grafana) . The initial login is “admin” and “admin”. It will prompt
you to change the password - use the class password.

http://oob.srv1.campusx.ws.nsrc.org/grafana
http://oob.srv1.campusx.ws.nsrc.org/grafana

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 6/17

On the left-hand side, find the “Configuration” icon - it looks like a cog. Under here click “Data
Sources”.

Click the blue button “Add data source”.

From the list of data sources shown, under “Logging & document databases”, click on “Loki”

Under HTTP, in the URL field, type http://localhost:3100 (it may look like it’s already there,
but you still need to type over it)

Click the blue “Save & Test”. If successful, you should get a green banner saying “Data source
connected and labels found”.

Browse Grafana
ALL of the users in your group can now do the remaining exercise.

Login to the Grafana web interface as above.

From the left-hand set of icons, choose the “Explore” option (it looks like a compass)

At the very top of the page, next to “Explore”, ensure that “Loki” is selected from the drop-down
menu.

You can now explore logs by selecting the “Log labels” menu, selecting any particular label (for
example “host”) and then selecting one of the labels offered (e.g. “srv1”). Then click “Run query” at
the top right.

This will build a query for you: {host="srv1"} and display the matching logs. You will get a bar
graph showing the number of matching logs per second, and the logs themselves shown at the
end.

Toggle the “Unique labels” switch to see the labels next to each message.

When you click on an individual message to expand it, there are filter buttons which let you drill
down to logs with matching labels. For example, if you look at a cron line and it has label “app”
value “CRON”, then clicking the plus-magnifying glass will adjust the query so that it shows only
logs with app="CRON" .

Try a query which matches on the content of the message. Under “Line contains”, enter “pam”
(without the quotes). This should build the following query, which shows any message which
contains the string “pam”:

{host="srv1"} |="pam"

At the very top-right, next to Run Query, is a button “Live”. Click on this to get live log tailing. Login
to srv1 from another machine, and the web browser should show additional matching logs as they
occur.

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 7/17

Additional exercises
These are optional improvements to the logging configuration - you can try them out if you have
time, or just keep them as a reference.

Logging source IP addresses
The “hostname” field within a syslog message is easily forged, and it would be more secure if we
could also record the originating IP address of each message.

We can do this by getting rsyslog to send hostname/ipaddress in the hostname field - this is a
convention started by syslog-ng (https://www.syslog-ng.com/technical-documents/doc/syslog-ng-open-
source-edition/3.23/administration-guide/59#global-options-chain-hostnames) - and getting promtail to split
this into two labels.

Edit /etc/loki/promtail.yaml and replace the relabel_configs section of the syslog job,
so it looks like this:

- job_name: syslog

syslog:

listen_address: 127.0.0.1:5140

relabel_configs:

- source_labels: [__syslog_message_severity]

target_label: severity

- source_labels: [__syslog_message_facility]

target_label: facility

- source_labels: [__syslog_message_hostname]

regex: '([^/]*)'

target_label: host

- source_labels: [__syslog_message_hostname]

regex: '(.*)/(.*)'

replacement: '$1'

target_label: host

- source_labels: [__syslog_message_hostname]

regex: '(.*)/(.*)'

replacement: '$2'

target_label: ip

- source_labels: [__syslog_message_app_name]

target_label: app

Hostnames which don’t contain a slash are copied to the “host” label as before. But for hostnames
which do contain a slash, the part before goes to “host” and the part afterwards to “ip”.

Restart promtail and check for errors:

https://www.syslog-ng.com/technical-documents/doc/syslog-ng-open-source-edition/3.23/administration-guide/59#global-options-chain-hostnames
https://www.syslog-ng.com/technical-documents/doc/syslog-ng-open-source-edition/3.23/administration-guide/59#global-options-chain-hostnames

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 8/17

systemctl restart promtail

journalctl -eu promtail

Now replace /etc/rsyslog.d/25-promtail.conf with the following:

template(name="Custom_SyslogProtocol23Format" type="string"

string="<%PRI%>1 %TIMESTAMP:::date-rfc3339%

%HOSTNAME%/%FROMHOST-IP% %APP-NAME% %PROCID% %MSGID%

%STRUCTURED-DATA% %msg%\n")

. action(type="omfwd" protocol="tcp"

target="127.0.0.1" port="5140"

Template="Custom_SyslogProtocol23Format"

TCP_Framing="octet-counted")

This replaces the built-in RSYSLOG_SyslogProtocol23Format (https://www.rsyslog.com/doc/v8-
stable/configuration/templates.html#reserved-template-names) template with a custom version with
%HOSTNAME%/%FROMHOST-IP% in the hostname field.

Restart rsyslog and check for errors:

systemctl restart rsyslog

journalctl -eu rsyslog

Make some logs (e.g. login to router and do conf t , exit)

Check to see if a new “ip” label has been seen, and what values it has:

logcli labels

logcli labels ip

Query your logs using the source IP label as a filter:

logcli query '{ip="100.68.X.Y"}'

(replacing X and Y as appropriate)

You can match multiple values with a regular expression. In a regular expression, . matches any
character, so you need \. to match a literal dot. \d matches any single digit (0-9), and \d+
matches any sequence of one or more digits.

However in LogQL the backslashes need to be doubled-up to make a valid query:

logcli query '{ip=~"100\\.68\\.\\d+\\.\\d+"}'

https://www.rsyslog.com/doc/v8-stable/configuration/templates.html#reserved-template-names
https://www.rsyslog.com/doc/v8-stable/configuration/templates.html#reserved-template-names

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 9/17

To avoid this issue, you can surround the entire value with backticks instead of double-quotes (new
feature in loki 1.5):

logcli query '{ip=~`100\.68\.\d+\.\d+`}'

!!! Note

In all cases, the single-quotes outside the expression are very

important.

These stop the shell from doing its own expansions on

backslashes and

backticks.

Improving rsyslog parsing
Unfortunately, there is wide variation of how different vendor devices format logs. The “standard”
defines a tag field:

timestamp hostname tag message

The tag can include the process name and pid, like sshd[12345]: . But some devices don’t
include a tag: this means you may get a device which sends a message like this:

Invalid sequence number

but it gets interpreted by rsyslog (and forwarded to loki) as:

app="Invalid"

msg=" sequence number"

This displays wrongly in loki and is harder to search.

You can fix this by tweaking some settings in rsyslog, so that it only splits out the tag field if it ends
in a colon. To do this, edit /etc/rsyslog.conf , find this section:

provides UDP syslog reception

module(load="imudp")

input(type="imudp" port="514")

and add the following after it (replacing any RulesetParser section you already have):

Some devices miss the "tag" field from syslog messages

https://www.rsyslog.com/doc/v8-

stable/configuration/modules/pmrfc3164.html

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 10/17

parser(name="custom.rfc3164"

type="pmrfc3164"

force.tagEndingByColon="on"

permit.squareBracketsInHostname="on"

detect.YearAfterTimestamp="on")

Replace the default parser chain

https://www.rsyslog.com/doc/v8-

stable/configuration/ruleset/rsconf1_rulesetparser.html

module(load="pmciscoios")

$RulesetParser rsyslog.ciscoios

$RulesetParser rsyslog.rfc5424

$RulesetParser custom.rfc3164

This still allows devices to send using the newer and more strictly defined rfc5424 format, but if not,
falls back to our customised rfc3164 parser which requires tags to end with a colon.

(Why isn’t this the default behaviour? It’s because the original “standard” RFC 3164 doesn’t require
a colon at the end of the tag, so rsyslog follows the standard. But in practice, most devices which
send a tag do end it with a colon)

Application log aggregation

On srv1, there is a log file /var/log/apache2/access.log . Can you get this into loki too? Yes -
by using promtail to read it.

Edit /etc/loki/promtail.yaml and add the following to the end under the scrape_jobs
section. Alignment is important: the dash before job_name must align exactly with the dash of the
previous job_name .

- job_name: apache2_access

static_configs:

- targets: [localhost]

labels:

job: apache2

__path__: /var/log/apache2/access.log

Restart promtail and check for errors:

systemctl restart promtail

journalctl -eu promtail

Using your web browser, refresh a page on srv1, or generate a web request from the command
line:

curl localhost

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 11/17

Now check your logs:

logcli query '{job="apache2"}'

The results should look something like this:

Common labels: {filename="/var/log/apache2/access.log",

job="apache2"}

2020-03-06T14:39:01Z {} 127.0.0.1 - - [06/Mar/2020:14:39:01

+0000] "GET / HTTP/1.1" 200 1856 "-" "curl/7.47.0"

You are storing the raw log lines (https://httpd.apache.org/docs/2.4/logs.html#accesslog) .

It is possible to perform additional processing in a pipeline
(https://github.com/grafana/loki/blob/master/docs/clients/promtail/configuration.md#pipeline_stages) , to
extract fields from this into labels. However, you need to be careful to avoid “high cardinality” labels
- that means labels which can have many different values. Loki assembles logs with the same
labels into the same chunks, but if you have many different labels then loki can be forced to track
many small chunks which makes it very inefficient and may crash.

For example, the source IP address may be high cardinality if your web site could be accessed
from anywhere on the Internet - this means it is not a good candidate for a label. However the
status code (e.g. “200”) only has a small number of possible values so is safe in a label, and also
useful (e.g. you can quickly search for requests which generated a “500” status)

To test this, add the following to the end of the scrape config. The new section “pipeline_stages”
should line up with “static_configs” above it.

pipeline_stages:

- regex:

expression: '^\S+ \S+ \S+ \[[^\]]*\] "[^"]*" (?

P<code>\d+) \d+'

- labels:

code:

Restart promtail again. Generate some requests:

curl localhost

curl localhost/foobar

Finally, check the logs again:

logcli query '{job="apache2"}'

The results should look something like this:

https://httpd.apache.org/docs/2.4/logs.html#accesslog
https://github.com/grafana/loki/blob/master/docs/clients/promtail/configuration.md#pipeline_stages
https://github.com/grafana/loki/blob/master/docs/clients/promtail/configuration.md#pipeline_stages

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 12/17

Common labels: {filename="/var/log/apache2/access.log",

job="apache2"}

2020-03-06T15:02:28Z {code="404"} 127.0.0.1 - -

[06/Mar/2020:15:02:28 +0000] "GET /foobar HTTP/1.1" 404 432 "-"

"curl/7.47.0"

2020-03-06T15:02:27Z {code="200"} 127.0.0.1 - -

[06/Mar/2020:15:02:27 +0000] "GET / HTTP/1.1" 200 1856 "-"

"curl/7.47.0"

Now you can quickly search for logs which have an error code starting 4 or 5:

logcli query '{job="apache2",code=~"[45].+"}'

Linux syslog aggregation
If you still have spare time, remember that you also have other Linux hosts (host1-6) in your
campus. Can you configure them to log centrally as well?

For syslog there are two main options: you could get the host’s rsyslog server to send to rsyslog on
srv1 (TCP or UDP port 514), or you could get it to write syslog messages directly to loki (TCP port
5140).

You could also run promtail on the remote hosts, which would be useful if you also needed to pick
up application logs from those hosts.

How to configure any of these options is left as an exercise.

Further reading
Grafana loki datasource (https://grafana.com/docs/grafana/latest/features/datasources/loki/)
Loki docs (https://github.com/grafana/loki/tree/master/docs)
LogQL (https://github.com/grafana/loki/blob/master/docs/logql.md)
GrafanaCONline video on Loki (https://www.youtube.com/watch?v=TcmvmqbrDKU)

To control how long Loki keeps logs for, see Loki Storage Retention
(https://github.com/grafana/loki/blob/master/docs/operations/storage/retention.md) . Old logs can be
automatically deleted by setting retention_deletes_enabled , retention_period and
max_look_back_period .

For storing large volumes of logs, Loki can be configured to use remote storage
(https://github.com/grafana/loki/blob/master/docs/operations/storage/README.md) , including the ability to
store log chunks into S3-compatible storage such as minio (https://min.io/) .

Reference: installation
This section is for reference only - it documents how loki and promtail are installed.

https://grafana.com/docs/grafana/latest/features/datasources/loki/
https://github.com/grafana/loki/tree/master/docs
https://github.com/grafana/loki/blob/master/docs/logql.md
https://www.youtube.com/watch?v=TcmvmqbrDKU
https://github.com/grafana/loki/blob/master/docs/operations/storage/retention.md
https://github.com/grafana/loki/blob/master/docs/operations/storage/retention.md
https://github.com/grafana/loki/blob/master/docs/operations/storage/README.md
https://github.com/grafana/loki/blob/master/docs/operations/storage/README.md
https://min.io/

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 13/17

All the loki components are available as pre-built binaries.

Fetch and unpack the latest release from the releases page (https://github.com/grafana/loki/releases/) :

wget

https://github.com/grafana/loki/releases/download/vX.Y.Z/loki-

linux-amd64.zip

wget

https://github.com/grafana/loki/releases/download/vX.Y.Z/logcli-

linux-amd64.zip

wget

https://github.com/grafana/loki/releases/download/vX.Y.Z/promtai

l-linux-amd64.zip

mkdir /opt/loki

unzip loki-linux-amd64.zip -d /opt/loki

unzip logcli-linux-amd64.zip -d /opt/loki

unzip promtail-linux-amd64.zip -d /opt/loki

ln -s /opt/loki/logcli-linux-amd64 /usr/local/bin/logcli

Create a data directory for loki to use:

mkdir /etc/loki

mkdir /var/lib/loki

chown syslog:syslog /var/lib/loki

Use a text editor to create a systemd unit file /etc/systemd/system/loki.service with the
following contents:

[Unit]

Description=Loki logging server

Documentation=https://grafana.com/oss/loki/

After=network-online.target

Fix shutdown delays: if promtail is running on the same host,

loki should start first, and shutdown after.

Before=promtail.service

[Service]

User=syslog

Group=syslog

Restart=on-failure

RestartSec=5

https://github.com/grafana/loki/releases/

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 14/17

WorkingDirectory=/var/lib/loki

EnvironmentFile=/etc/default/loki

ExecStart=/opt/loki/loki-linux-amd64 $OPTIONS

[Install]

WantedBy=multi-user.target

Also create an options file /etc/default/loki with the following contents:

OPTIONS='-config.file=/etc/loki/loki.yaml -log.level=warn'

(-log.level=warn is to suppress excessive log messages
(https://groups.google.com/d/msg/lokiproject/ZmgpAQ5vCjc/i9xCFeVEAQAJ) from loki’s storage backend)

Create the initial /etc/loki/loki.yaml with the following contents
(https://raw.githubusercontent.com/grafana/loki/master/cmd/loki/loki-local-config.yaml) :

auth_enabled: false

server:

http_listen_port: 3100

grpc_listen_port: 9096

common:

path_prefix: /var/lib/loki

storage:

filesystem:

chunks_directory: /var/lib/loki/chunks

rules_directory: /var/lib/loki/rules

replication_factor: 1

ring:

instance_addr: 127.0.0.1

kvstore:

store: inmemory

schema_config:

configs:

- from: 2020-10-24

store: boltdb-shipper

object_store: filesystem

schema: v11

index:

prefix: index_

https://groups.google.com/d/msg/lokiproject/ZmgpAQ5vCjc/i9xCFeVEAQAJ
https://groups.google.com/d/msg/lokiproject/ZmgpAQ5vCjc/i9xCFeVEAQAJ
https://raw.githubusercontent.com/grafana/loki/master/cmd/loki/loki-local-config.yaml
https://raw.githubusercontent.com/grafana/loki/master/cmd/loki/loki-local-config.yaml

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 15/17

period: 24h

ruler:

alertmanager_url: http://localhost:9093/alertmanager

compactor:

retention_enabled: true

limits_config:

retention_period: 91d

enforce_metric_name: false

reject_old_samples: true

reject_old_samples_max_age: 168h

By default, Loki will send anonymous, but uniquely-

identifiable usage and configuration

analytics to Grafana Labs. These statistics are sent to

https://stats.grafana.org/

#

Statistics help us better understand how Loki is used, and

they show us performance

levels for most users. This helps us prioritize features and

documentation.

For more information on what's sent, look at

#

https://github.com/grafana/loki/blob/main/pkg/usagestats/stats.g

o

Refer to the buildReport method to see what goes into a

report.

#

If you would like to disable reporting, uncomment the

following lines:

analytics:

reporting_enabled: false

Note that this configuration is insecure. In practice, you should front loki with an authentication
proxy (https://github.com/grafana/loki/blob/master/docs/operations/authentication.md) , or use iptables to
limit access.

Create /etc/systemd/system/promtail.service :

[Unit]

Description=Promtail

https://github.com/grafana/loki/blob/master/docs/operations/authentication.md
https://github.com/grafana/loki/blob/master/docs/operations/authentication.md

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 16/17

Documentation=https://github.com/grafana/loki/tree/master/docs/c

lients/promtail

After=network-online.target

[Service]

User=syslog

Group=syslog

Restart=on-failure

RestartSec=5

WorkingDirectory=/var/log

EnvironmentFile=/etc/default/promtail

ExecStart=/opt/loki/promtail-linux-amd64 $OPTIONS

[Install]

WantedBy=multi-user.target

Create /etc/default/promtail :

OPTIONS='-config.file=/etc/loki/promtail.yaml'

Create /etc/loki/promtail.yaml :

Promtail can expose prometheus metrics

server:

http_listen_address: 127.0.0.1

http_listen_port: 9080

grpc_listen_port: 0

How to find the loki server(s)

clients:

- url: http://127.0.0.1:3100/loki/api/v1/push

Logs to read and forward

scrape_configs:

- job_name: syslog

syslog:

listen_address: 127.0.0.1:5140

relabel_configs:

- source_labels: [__syslog_message_severity]

target_label: severity

- source_labels: [__syslog_message_facility]

target_label: facility

5/29/24, 6:41 PM Configuring Loki

https://nsrc.vtp.kenet.or.ke/current/netmgmt/en/log-management/exercises-log-management-loki.html 17/17

- source_labels: [__syslog_message_hostname]

target_label: host

- source_labels: [__syslog_message_app_name]

target_label: app

Finally, tell systemd to read our new service files:

systemctl daemon-reload

Grafana is available (https://grafana.com/docs/grafana/latest/installation/) pre-packaged in many
formats, including deb packages for Ubuntu:

curl -fsSL https://apt.grafana.com/gpg.key

>/etc/apt/trusted.gpg.d/grafana.asc

echo "deb https://apt.grafana.com stable main"

>/etc/apt/sources.list.d/grafana.list

apt-get update

apt-get install grafana

https://grafana.com/docs/grafana/latest/installation/

