Network Management and Monitoring

Introduction to Netflow

UNIVERSITY OF OREGON

These materials are licensed under the Creative Commons *Attribution-Noncommercial 3.0 Unported* license (http://creativecommons.org/licenses/by-nc/3.0/)

Agenda

- 1. Netflow
 - What it is and how it works
 - Uses and applications
- 2. Generating and exporting flow records
- 3. Nfdump and Nfsen
 - Architecture
 - Usage
- 4. Lab

What is a Network Flow

- A set of related packets
- Packets that belong to the same transport connection. e.g.
 - TCP, same src IP, src port, dst IP, dst port
 - UDP, same src IP, src port, dst IP, dst port
 - Usually flows are considered "Unidirectional"
 - i.e. $A \rightarrow B$ and $B \rightarrow A$ are two different flows
 - Some tools consider flows as "Bidirectional"
 - i.e. $A \rightarrow B$ and $B \rightarrow A$ as part of the same flow

http://en.wikipedia.org/wiki/Traffic_flow_(computer_networking)

UNIVERSITY OF OREGON

Simple flows

 \rightarrow

- = Packet belonging to flow X
- = Packet belonging to flow Y

Cisco IOS Definition of a Flow

Unidirectional sequence of packets sharing:

- Source IP address
- Destination IP address
- Source port for UDP or TCP, 0 for other protocols
- Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols
- IP protocol
- Ingress interface (SNMP ifIndex)
- IP Type of Service

IOS: which of these six packets are in the same (bidirectional) flows?

	Src IP	Dst IP	Protocol	Src Port	Dst Port
А	1.2.3.4	5.6.7.8	6 (TCP)	4001	22
В	5.6.7.8	1.2.3.4	6 (TCP)	22	4001
С	1.2.3.4	5.6.7.8	6 (TCP)	4002	80
D	1.2.3.4	5.6.7.8	6 (TCP)	4001	80
Е	1.2.3.4	8.8.8.8	17 (UDP)	65432	53
F	8.8.8.8	1.2.3.4	17 (UDP)	53	65432

IOS: which of these six packets are in the same (bidirectional) flows?

	Src IP	Dst IP	Protocol	Src Port	Dst Port
Α	1.2.3.4	5.6.7.8	6 (TCP)	4001	22
В	5.6.7.8	1.2.3.4	6 (TCP)	22	4001
С	1.2.3.4	5.6.7.8	6 (TCP)	4002	80
D	1.2.3.4	5.6.7.8	6 (TCP)	4001	80
Е	1.2.3.4	8.8.8.8	17 (UDP)	65432	53
F	8.8.8.8	1.2.3.4	17 (UDP)	53	65432
INIVERSITY OF		What abo	ut packets "(C" and "D"?	

UNIVERSITY OF OREGON

Flow Accounting

- A summary of all the packets seen in a flow (so far):
 - Flow identification: protocol, src/dst IP/port...
 - Packet count
 - Byte count
 - Start and end times
 - Maybe additional info, e.g. AS numbers, netmasks
- Records traffic volume and type but not content

Uses and Applications

You can answer questions like:

- Which user / department has been uploading / downloading the most?
- Which are the most commonly-used protocols on my network?
- Which devices are sending the most SMTP traffic, and to where?
- Identification of anomalies and attacks
- More fine-grained visualisation (graphing) than can be done at the interface level

Working with flows

- 1. Configure device (e.g. router) to generate flow accounting records
- 2. Export the flows from the device (router) to a collector (PC)
 - Configure protocol version and destination
- 3. Receive the flows, write them to disk
- 4. Analyse the flows

Many tools available, both free and commercial

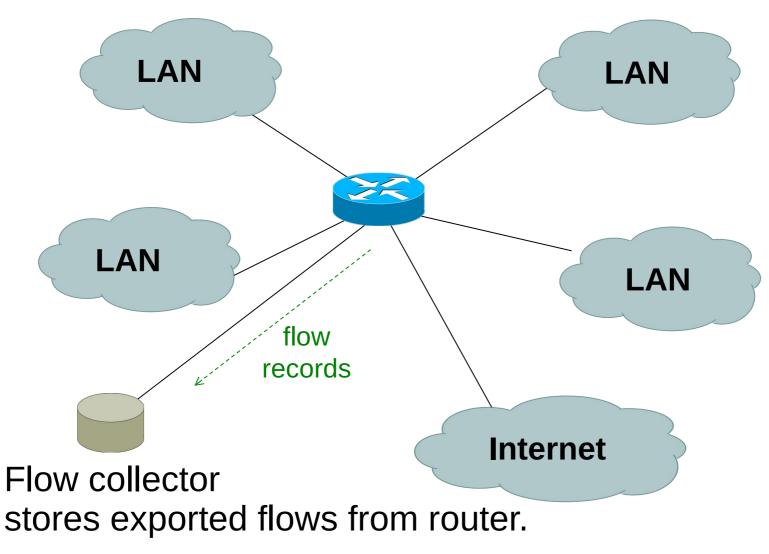
Where to generate flow records?

Option 1: On a network device

- If the device supports it
- No additional hardware required
- Might have some impact on performance

Option 2: Passive collector (usually a Unix host)

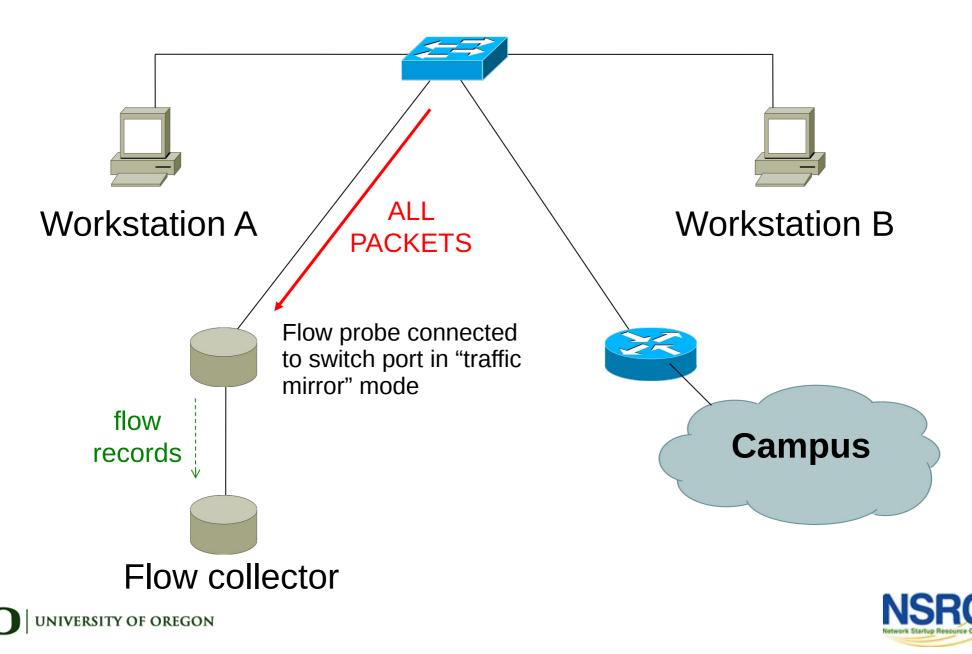
- Receives a copy of every packet and generates flows
- Requires a mirror port
- Resource intensive


A thought:

Your network probably already has a device which is keeping track of IP addresses and port numbers of traffic flowing through it.

What is it?

Flow Collection


UNIVERSITY OF OREGON

Flow Collection

- All flows through router can be observed
- Router overhead to process & export flows
- Can select which interfaces Netflow collection is needed on and not activate it on others
- If router on each LAN, Netflow can be activated on them to reduce load on core router

Passive Monitor Collection

Passive Collector

- Examples
 softflowd (Linux/BSD)
 pfflowd (BSD)
 ng_netflow (BSD)
- Collector sees all traffic through the network point it is connected on and generates flows
- Relieves router from processing traffic, creating flows and exporting them

Passive Collector

• Useful on links:

with only one entry into the network

- where only flows from one section of the network are needed
- Can be deployed in conjunction with an IDS

Flow Export Protocols

- Cisco Netflow, different versions
 - v5: widely deployed

v9: newer, extensible, includes IPv6 support

• IP Flow Information Export (IPFIX):

IETF standard, based on Netflow v9

- **sFlow**: Sampling-based, commonly found on switches
- **jFlow**: Juniper
- We use Netflow, but many tools support multiple protocols

Cisco Netflow

- Unidirectional flows
- IPv4 unicast and multicast
 (IPv6 in Netflow v9)
- Flows exported via UDP
 Choose a port. No particular standard, although 2055 and 9996 are commonly used
- Supported on IOS, ASA and CatOS platforms

 but with different implementations

Cisco IOS Configuration

- Configured on each interface
 - Inbound and outbound
 - Older IOS only allows input
- Define the version
- Define the IP address and port of the collector (where to send the flows)
- Optionally enable aggregation tables
- Optionally configure flow timeout and main (v5) flow table size
- Optionally configure sample rate

Configuring Netflow: the old way

Enable CEF

ip cef

ipv6 cef

• Enable flow on each interface

ip route cache flow (pre IOS 12.4)

OR

ip flow ingress (IOS 12.4 onwards)

ip flow egress

Exporting Flows to a collector

ip flow-export version [5|9] [origin-as|peer-as]

ip flow-export destination <x.x.x.x> <udp-port>

"Flexible Netflow": the new way

- Only way to monitor IPv6 flows on modern IOS
- Start using it now IPv6 is coming / here
- Many mind-boggling options available, but basic configuration is straightforward

Flexible Netflow Configuration

Define one or more exporters

flow exporter EXPORTER-1
 destination 100.68.1.130
 transport udp 9996
 source Loopback0
 template data timeout 300

Flexible Netflow Configuration

Define one or more flow monitors

flow monitor FLOW-MONITOR-V4
exporter EXPORTER-1
cache timeout active 300
record netflow ipv4 original-input

flow monitor FLOW-MONITOR-V6
 exporter EXPORTER-1
 cache timeout active 300
 record netflow ipv6 original-input

Flexible Netflow Configuration

Apply flow monitors to active interface

interface GigabitEthernet0/0/0
ip flow monitor FLOW-MONITOR-V4 input
ip flow monitor FLOW-MONITOR-V4 output
ipv6 flow monitor FLOW-MONITOR-V6 input
ipv6 flow monitor FLOW-MONITOR-V6 output

"Top-talkers"

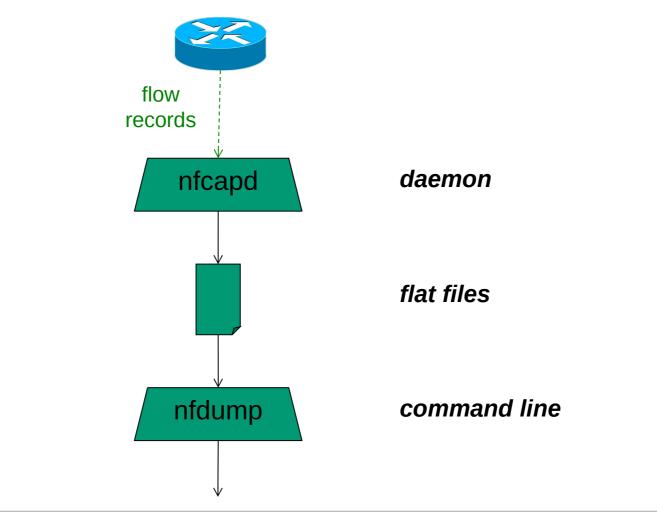
• You can summarize flows directly on the router, e.g.

show flow monitor FLOW-MONITOR-V4 cache aggregate ipv4 source address ipv4 destination address sort counter bytes top 20

- Yes, that's one long command!
- Old command not available for Flexible Netflow show ip flow top-talkers

- Make an Alias: conf t alias exec top-talkers show flow..

Looking at collected flow data: nfdump


- Free and open source Runs on collector
- *nfcapd* listens for incoming flow records and writes them to disk (flat files)

typically starts a new file every 5 minutes

- *nfdump* reads the files and turns them into human-readable output
- *nfdump* has command-line options to filter and aggregate the flows

nfcapd / nfdump architecture

Date flow start	Duration Proto	Src IP Addr:Port	Dst IP Addr:Port	Packets	Bytes Fl	ows
2013-04-18 13:35:23.353	1482.000 UDP	10.10.0.119:55555 ->	190.83.150.177:54597	8683	445259	1
2013-04-18 13:35:23.353	1482.000 UDP	190.83.150.177:54597 ->	10.10.0.119:55555	8012	11.1 M	1
2013-04-18 13:48:21.353	704.000 TCP	196.38.180.96:6112 ->	10.10.0.119:62099	83	20326	1
2013-04-18 13:48:21.353	704.000 TCP	10.10.0.119:62099 ->	196.38.180.96:6112	105	5085	1

Questions?

O UNIVERSITY OF OREGON

References – Tools (OSS)

- nfdump and nfsen:
- http://nfdump.sourceforge.net/
- http://nfsen.sourceforge.net/ (unmaintained) http://nfsen-plugins.sourceforge.net/ (unmaintained)
- pmacct and pmgraph:
- http://www.pmacct.net/ http://www.aptivate.org/pmgraph/
- SiLK and flowviewer:
- https://tools.netsa.cert.org/silk/ http://flowviewer.net/
 - Others: flow-tools (obsolete?), vflow, goflow

References – Tools (Free)

- Filebeat + Elasticsearch + Kibana
 - these are "mostly free" to use
 - under terms of the Elastic License, you cannot offer them as a cloud service
 - you could choose to pay for support and extra features
- Alternatively: filebeat-oss + Opensearch + Opensearch Dashboard are fully free
 - self-support only

References – Tools (Commercial)

• NTOPng:

https://www.ntop.org/products/traffic-analysis/ntop/ *Free for R&E and non-profits:* https://www.ntop.org/support/faq/do-you-chargeuniversities-no-profit-and-research/

• Elastiflow:

https://docs.elastiflow.com/ Closed source, free license up to 4000 flows/sec (must be renewed annually)

• Many others

References – Further Info

WikiPedia:

- https://en.wikipedia.org/wiki/NetFlow
- IETF standards effort:
- https://datatracker.ietf.org/wg/ipfix/about/
- Cisco Centric Open Source Community
- http://cosi-nms.sourceforge.net/related.html

This slide left intentionally blank...

The End

(Additional reference materials follow)

O UNIVERSITY OF OREGON

Filter Examples

all traffic any only TCP traffic proto tcp dst host 1.2.3.4 only traffic to 1.2.3.4 dst net 10.10.1.0/24 only traffic to that range not dst net 10.10.1.0/24 only traffic not to that range proto tcp and src port 80 only TCP with source port 80 dst net 10.10.1.0/24 or dst net 10.10.2.0/24 only traffic to those nets dst net 10.10.1.0/24 and proto tcp and src port 80 only HTTP response traffic to that net (dst net 10.10.1.0/24 or dst net 10.10.2.0/24) and proto tcp and src port 80

...more complex combinations possible

Flows and Applications

More Examples

Uses for Netflow

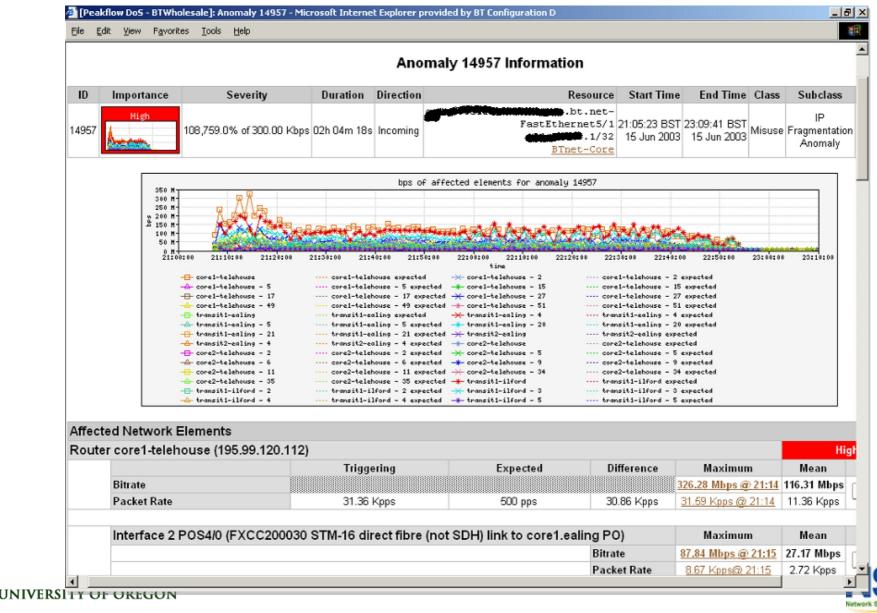
- Problem identification / solving
 - Traffic classification
 - DoS Traceback (some slides by Danny McPherson)
- Traffic Analysis and Engineering
 Inter-AS traffic analysis
 Reporting on application proxies
- Accounting (or billing)
 - Cross verification from other sources
 - Can cross-check with SNMP data

Detect Anomalous Events: SQL 'Slammer' Worm*

Flow-based Detection (cont)*

Once baselines are built anomalous activity can be

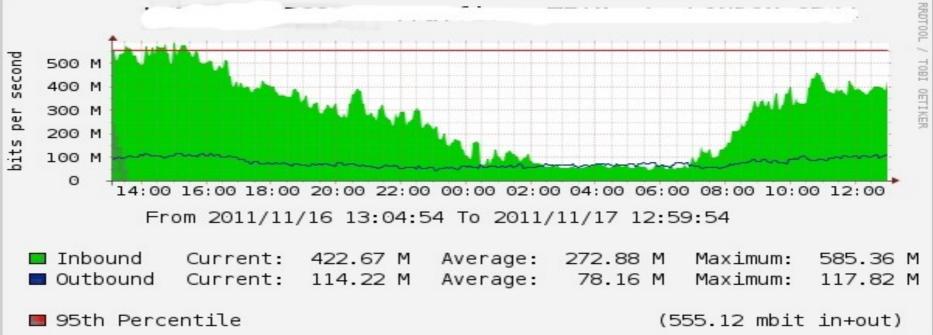
- detected
- Pure rate-based (pps or bps) anomalies may be legitimate or
 - malicious
 - Many misuse attacks can be immediately recognized, even
 - without baselines (e.g., TCP SYN or RST floods)
 - Signatures can also be defined to identify "interesting"
 - transactional data (e.g., proto udp and port 1434 and 404
 - octets(376 payload) == slammer!)
 - Temporal compound signatures can be defined to detect
 - with higher precision



Flow-based Commercial Tools...*

ID	Importance	Durat	ion Start	Time	Direction	Туре	•		Resou
150228	High 130.0% of 2 Kpps	17 m	iins 03:34,	Aug 16 Incoming		Bandwidth (Profiled)		Micros 207.46.0.0 <u>windowsupdate</u> .	
Traffic C	haracterization	3 k 		pps of affe	ected elemen	nts for anoma	aly 150228		
Sources	204.38.130.0/24	2.5 k-	R	-8					
	204.38.130.192/26	2 k-	u						
	1024 - 1791	å 1.5 k-							
Destinatior	207.46.248.234/32	1 k-			0	<u> </u>			
	80 (http)	0.5 k-							
Protocols	tcp (6)	0 k	0 03:38:00 ()3:40:00 03:4	2:00 03:4	4:00 03:46	:00 03:4	8:00 03:50	:00 03:
TCP Flags	S (0x02)	time —— nl-chi3 - 67							
Affected Network Elements				Expected	ected Observed bps		Observed pps		
			Importance	pps	Max	Mean	Max	Mean	
Router nl-chi3 198.110.131.125 High									
Interface 67 at-1/1/0.14 pvc to WMU				26	6 832 K	563.1 K	2.6 K	1.7 K	Details

Commercial Detection: A Large Scale DOS Attack



Accounting

• Flow based accounting can be a good supplement to SNMP based accounting.

Cisco Netflow Versions

- Key fields: Source/Destination IP, Source/Destination Port, IP Protocol, ToS, Input interface.
- Accounting: Packets, Octets, Start/End time, Output interface
- Other: Bitwise OR of TCP flags.
- Does not have sequence numbers no way to detect lost flows
- Obsolete

Netflow v2 to v4

- Cisco internal
- Were never released

- Key fields: Source/Destination IP, Source/Destination Port, IP Protocol, ToS, Input interface.
- Accounting: Packets, Octets, Start/End time, Output interface.
- Other: Bitwise OR of TCP flags, Source/Destination AS and IP Mask.
- Packet format adds sequence numbers for detecting lost exports.
- IPv4 only

Netflow v6 & v7

- Used exclusively on the Cisco Catalyst line of ethernet switches
- Requires the Netflow Feature Card, a specialist forwarding engine for the Catalyst Switches
- Not compatible or comparable with Netflow on Cisco routers

- Aggregated v5 flows.
- Not all flow types available on all equipment
- Much less data to post process, but loses fine granularity of v5 – no IP addresses.

- IPv6 support
- 32-bit ASN support
- Additional fields like MPLS labels
- Builds on earlier versions
- Periodically sends "template" packet, all flow data fields reference the template

