DOMAIN NAME SYSTEM (DNS) FUNDAMENTALS

HEZRON MWANGI Systems Administrator hmwangi@kenet.or.ke

19th August 2013

Computers use IP addresses Why do we need names?

- Names are easier for people to remember.
- Computers may be moved between networks, in which case their IP address will change.

The old solution: HOSTS.TXT

 A centrally-maintained file, distributed to all hosts on the Internet.

training 128.4.13.9

mail.training 4.98.133.7

ftp.training 200.10.194.33

... etc

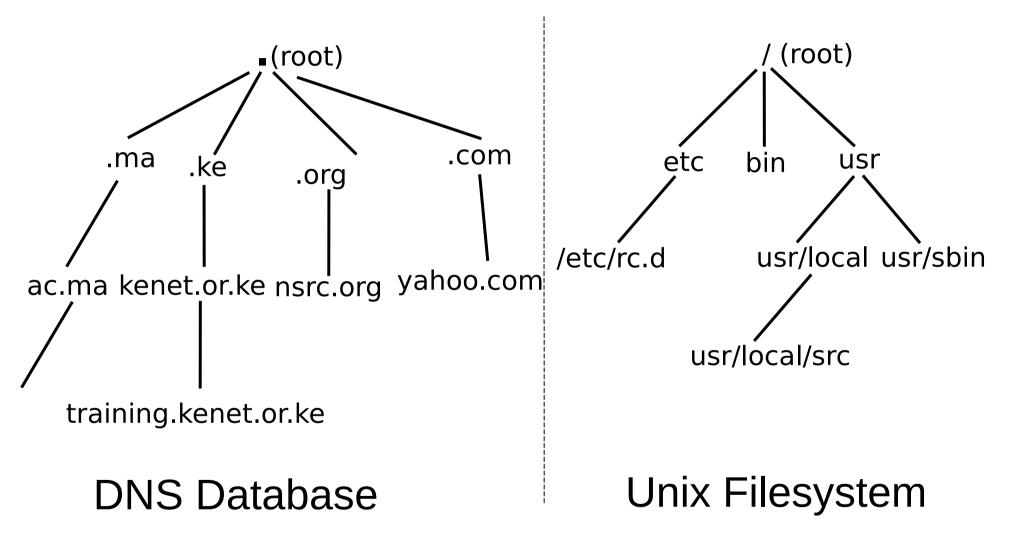
This feature still exists:

/etc/hosts (UNIX)

c:\windows\hosts

hosts.txt does not scale

- Huge file (traffic and load).
- Name collisions (name uniqueness).
- Consistency.
- Always out of date.
- Single point of Administration.
- Did not scale well.



The Domain Name System

- •DNS is a distributed database for holding name to IP address (and other) information.
- •Distributed:
 - Shares the Administration.
 - Shares the Load.
- Robustness and improved performance achieved through
 - replication.
 - · and caching.
- Employs a client-server architecture.
- •A critical piece of the Internet's infrastructure.

DNS is Hierarchical

Forms a tree structure

DNS is Hierarchical (cont'd.)

- •Globally unique names.
- •Administered in zones (parts of the tree).
- •You can give away ("delegate") control of part of the tree underneath you.
- •Example:
 - kenet.or.ke on one set of nameservers.
 - training.kenet.or.ke on a different set.
 - unix.training.kenet.or.ke on another set.

Domain Names are (almost) unlimited

- Max 255 characters total length.
- Max 63 characters in each part.
 - RFC 1034, RFC 1035.
- •If a domain name is being used as a host name, you should abide by some restrictions.
- •RFC 952 (old!).
 - a-z 0-9 and minus (-) only.
 - No underscores ().

Using the DNS

- •A Domain Name (like training.kenet.or.ke) is the KEY to look up information.
- •The result is one or more RESOURCE RECORDS (Rrs).
- There are different RRs for different types of information.
- You can ask for the specific type you want, or ask for "any" RRs associated with the domain name.

Commonly seen Resource Records (RRs)

- A (address): map hostname to IPv4 address.
- AAAA (quad A): map a hostname to IPv6 address.
- PTR (pointer): map IP address to hostname.
- MX (mail exchanger): where to deliver mail for user@domain.
- CNAME (canonical name): map alternative hostname to real hostname.
- TXT (text): any descriptive text.
- NS (name server), SOA (start of authority): used for delegation and management of the DNS itself.

A Simple Example

- Query: www.kenet.or.ke.
- •Query type: A
- •Result:
 - www.kenet.or.ke. 14400 IN A 196.216.2.4
- •In this case a single RR is found, but in general, multiple RRs may be returned.
 - (IN is the "class" for INTERNET use of the DNS)

Possible results from a Query

POSITIVE.

one or more RRs found.

•NEGATIVE.

definitely no RRs match the query.

•SERVER FAIL.

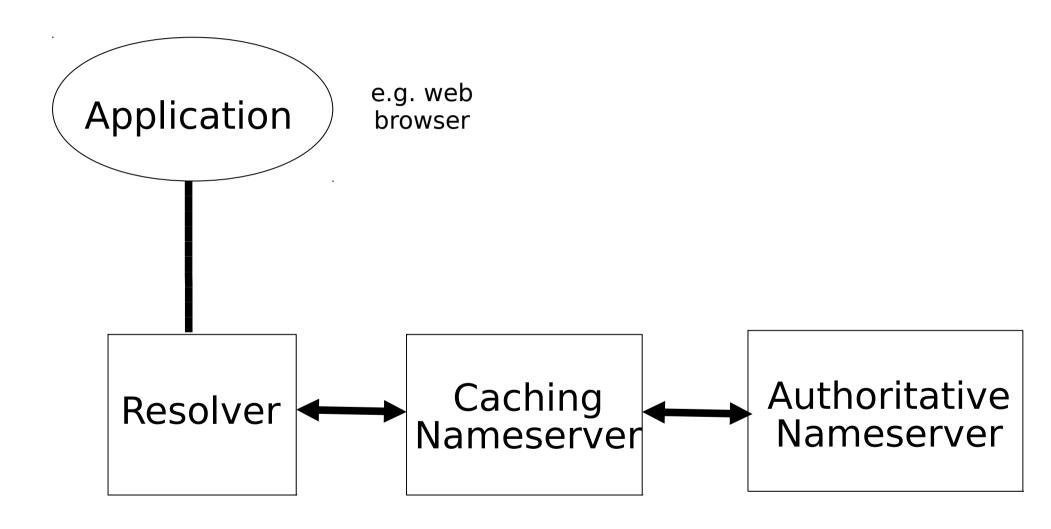
cannot find the answer.

•REFUSED.

not allowed to query the server.

How do you use an IP address as the key for a DNS query

- Convert the IP address to dotted-quad.
- Reverse the four parts.
- Add ".in-addr.arpa." to the end; special domain reserved for this purpose.
 - e.g. to find name for 41.204.161.16
 - Domain name: 16.161.204.41.in-addr.arpa.
 - Query Type: PTR
 - Result: training.kenet.or.ke.
- •Known as a "reverse DNS lookup" (because we are looking up the name for an IP address, rather than the IP address for a name).



DNS is a Client-Server application

- (Of course it runs across a network).
- Requests and responses are normally sent in UDP packets, port 53.
- Occasionally uses TCP, port 53.
 - for very large requests (larger than 512bytes) e.g. zone transfer from master to slave or an IPv6 AAAA (quad A) record.

There are three roles involved in DNS

Three roles in DNS

•RESOLVER

 Takes request from application, formats it into UDP packet, sends to cache

•CACHING NAMESERVER

- Returns the answer if already known
- Otherwise searches for an authoritative server which has the information
- Caches the result for future queries
- Also known as RECURSIVE nameserver

• AUTHORITATIVE NAMESERVER

Contains the actual information put into the DNS by the domain owner

Three roles in DNS

- The SAME protocol is used for resolver <->
 cache and cache <-> auth NS communication.
- It is possible to configure a single name server as both caching and authoritative.
- But it still performs only one role for each incoming query.
- Common but NOT RECOMMENDED to configure in this way.

THE RESOLVER

- A piece of software which formats a DNS request into a UDP packet, sends it to a cache, and decodes the answer.
- Usually a shared library (e.g. libresolv.so under Unix) because so many applications need it.
- EVERY host needs a resolver e.g. every Windows workstation has one.

How does the resolver find a caching nameserver?

- It has to be explicitly configured (statically, or via DHCP etc).
- Must be configured with the IP ADDRESS of a cache.
- Good idea to configure more than one cache, in case the first one fails.

How do you choose which cache(s) to configure?

- Must have PERMISSION to use it.
 - e.g. cache at your ISP, or your own.
- Prefer a nearby cache.
 - Minimises round-trip time and packet loss.
 - Can reduce traffic on your external link, since often the cache can answer without contacting other servers.
- Prefer a reliable cache.
 - Perhaps your own?

Resolver can be configured with default domain(s)

- If "foo.bar" fails, then retry query as "foo.bar.mydomain.com".
- Can save typing but adds confusion.
- May generate extra unnecessary traffic.
- Usually best avoided.

Example: Unix resolver configuration

- /etc/resolv.conf
 - search kenet.or.ke
 - Nameserver 41.204.164.3
 - Nameserver 41.89.1.4
- That's all you need to configure a resolver.

Testing DNS

- Just put "www.yahoo.com" in a web browser?
- Why is this not a good test?

Testing DNS with "dig"

- •"dig" is a program which just makes DNS queries and displays the results.
- Better than "nslookup", "host" because it shows the raw information in full.
 - dig training.kenet.or.ke.
 - -- defaults to query type "A".
 - dig kenet.or.ke. mx
 - -- specified query type.
 - Dig @41.204.164.3 kenet.or.ke. mx
 - -- send to particular cache (overrides /etc/resolv.conf).

The trailing dot

•# dig training.kenet.or.ke.

- Prevents any default domain being appended.
- Get into the habit of using it always when testing DNS.
- •Only on domain names, not IP addresses or e-mail addresses.

dig www.kenet.or.ke

```
: <<>> DiG 9.8.1-P1-RedHat-9.8.1-3.P1.fc15 <<>> www.kenet.or.ke
;; global options: +cmd
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2887
;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3
;; QUESTION SECTION:
;www.kenet.or.ke. IN A
;; ANSWER SECTION:
www.kenet.or.ke. 3600
                       IN A 41.204.161.16
```

;; AUTHORITY SECTION:

kenet.or.ke. 344 IN NS ns3.kenet.or.ke. kenet.or.ke. 344 IN NS ns1.kenet.or.ke. kenet.or.ke. 344 IN NS ns2.kenet.or.ke.

:: ADDITIONAL SECTION:

ns1.kenet.or.ke. 487 IN A 41.204.160.1 ns2.kenet.or.ke. 487 IN A 41.89.1.3 ns3.kenet.or.ke. 487 IN A 41.204.164.6

- ;; Query time: 1 msec
- ;; SERVER: 41.204.164.3#53(41.204.164.3)
- ;; WHEN: Wed May 9 10:43:56 2012
- ;; MSG SIZE rcvd: 151

Understanding output from dig

STATUS

- NOERROR: 0 or more RRs returned.
- NXDOMAIN: non-existent domain.
- SERVFAIL: cache could not locate answer.
- REFUSED: query not available on cache server.

FLAGS

- AA: Authoritative answer (not from cache).
- You can ignore the others.
 - QR: Query/Response (1 = Response).
 - RD: Recursion Desired.
 - RA: Recursion Available.
- ANSWER: number of RRs in answer.

Understanding output from dig Cont'd

- Answer section (RRs requested).
 - Each record has a Time To Live (TTL).
 - Says how long the cache will keep it.
- Authority section.
 - Which nameservers are authoritative for this domain.
- Additional section.
 - More RRs (typically IP addresses for the authoritative nameservers).
- Total query time.
- •Check which server gave the response!
 - If you make a typing error, the query may go to a default server.

Practical Exercise

- Configure Unix resolver.
- Issue DNS queries using 'dig'.
- Use tcpdump to show queries being sent to cache.

Q&A.

?

THANK YOU!