
Transforming education through ICT
Transforming learning research and working environments with ICT

FUL-02: Shell Scripting

Samuel K. Macharia

System Administrator, KENET

February, 2024.

Fundamentals of UNIX & Linux for
System Administrators

Transforming education through ICTTransforming learning research and working environments with ICT

Shell Scripting
Anything you can run normally on the command line can be put

into a script. Anything you can put into a script can run normally

on the command line.

Transforming education through ICTTransforming learning research and working environments with ICT

What is a Shell?
 A UNIX Shell is a program or a command line interpreter that

interprets the user commands which are either entered by the user
directly or which can be read from a file, and then pass them to the
operating system for processing.

 There are different types of shells available in Linux OS, these
includes;

1. Bourne Shell

2. C Shell

3. Korn Shell

4. GNU Bourne Shell

Transforming education through ICTTransforming learning research and working environments with ICT

What is a Shell?
 To know which shell types are supported by your OS;

==> cat /etc/shells
 To know where bash is located in your OS

==> which bash

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Script
 A script is a set of commands for an appropriate run time

environment which is used to automate the execution of tasks.
 A Bash Shell Script is a plain text file containing a set of various

commands that we usually type in the command line.
 It might include a set of commands, or a single command, or it

might contain the hallmarks of imperative programming like loops,
functions, conditional constructs

Transforming education through ICTTransforming learning research and working environments with ICT

Advantages of Scripts
 Automate frequently performed operations
 Run multiple commands at once
 Easy to use
 Executed easily on any UNIX/LINUX based OS
 Saves time

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Script Syntax
 All bash scripts must have a .sh extension.
 All scripts may start with the first line known as Shebang.
 Shebang indicates the interpreter that is being used to execute a

script (#! /bin/bash).
 Sample script for printing the word hello;

<snip>

#! /bin/bash

echo “hello”

</snip>

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Script Syntax
 Bash allows single-line and multi-line comments.
 For single-line comment, we use a hash (#) symbol at the start of

the comment.
 For multi-line comment, either enclose the comment between

<<COMMENT and COMMENT or :’ and ‘

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Variables
 Variables are the containers which store data or a useful piece of

information as the value inside them.
 A variable name can only contain letters (a-z, A-Z), numbers (0-9) or

an underscore (_). The name can only start with alphabets and
underscore.

 A variable name must have a variable value.
 Sample definitions for variables;

variable_name=variable value

VAR1=”Bash Scripting”

VAR2=100

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Variables
 Sample script with variables defined;

#! /bin/bash

VAR1=”Server Collocation”

VAR2=”KENET”

VAR3=”5000”

echo “The price of $VAR1 at $VAR2 per U is $VAR3 Kenya
shillings”.

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Variables (read-only)
 Bash shell provides a way to mark variables as read-only by using

the read-only command.
 After a value is marked read-only, its value cannot be altered.

Sample script with read-only

#! /bin/bash

NAME=”KENET”

readonly NAME

Name=”Kenet”

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Variables (read-only)
 Working with readonly variables

#! /bin/bash

NAME=”KENET”

echo “NAME”

readonly NAME

Name=”Kenet”

echo “NAME”

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Variables (Unsetting)
 Unsetting a variable informs the shell to remove the variable from

the lists of variable it tracks.
 Once you unset or delete a variable, you cannot access the stored

value in the variable.
 Syntax for unset command is; unset variable_name

#! /bin/bash

NAME=”KENET”

echo “NAME”

unset NAME

echo “NAME”

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Special Variables
 $# - Number of command-line arguments

 $_ - Set after the shell and contains the absolute file name of the script being
executed as passed in the argument list.

 $- - Expands to the current option flags as specified, by the set built-in command,
set by the shell itself)like -i option)

 $? - Exit value or status of last executed command

 $ - Process number of the shell

 $! - Process number of last background command

 $0 - First word, that is, the command name which will have the full pathname if it
was found via a PATH search

 $n - Individual arguments (positional parameters). (n=1-9); Bash allows n to be
greater than 9 if specified as ${n}

 $*,$@ - All arguments on command line ($1 $2 ...

 "$*" - Expands all arguments on the command line as one string ("$1 $2 ..."). Values
are separated by first character in $IFS.

 "$@" - All arguments on the command line that are individually quoted ("$1" "$2" ...)

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Arrays
 Similar to other arrays, bash arrays have numbered indexes. The

values can be defined altogether or one by one.

Syntax of bash array; ARR = (Hello world)

 Working of Bash Arrays

#! /bin/bash

ARRAY1=(cat dog mouse fish)

echo "First parameter of the array is = ${ARRAY1[0]}"

echo "Third parameter of the array is = ${ARRAY1[2]}"

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators
 Arithmetic Operators

Used to perform normal mathematical operations such as + (Addition), -
(Subtraction), * (Multiplication), / (Division), % (Modulus for finding the
remainder), ++ (increment), --(decrement).

#! /bin/bash

read -p "enter 1st value" a

read -p "enter 1st value" b

#addition

echo "addition:

a+b = $(($a + $b))

"

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators
 Arithmetic Operators

Used to perform normal mathematical operations such as + (Addition), -
(Subtraction), * (Multiplication), / (Division), % (Modulus for finding the
remainder), ++ (increment), --(decrement).

#! /bin/bash

read -p "enter 1st value" a

read -p "enter 1st value" b

#division

echo "Division:

a/b = $(($a/$b))

"

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators
 Arithmetic Operators

#! /bin/bash

read -p "enter 1st value" a

read -p "enter 1st value" b

#unary increment operator

echo "initial value of a is $a"

echo "incremented value of a is $((++a))"

#unary decrement operator

echo "initial value of b is $b"

echo "incremented value of b is $((--b))"

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators
 Relational Operators

they define the relation between two operands. Result in either a true or false
depending on the relation. such as ==, !=, <, <=, >, >=.

 #! /bin/bash

STRING1="$1"

STRING2="$2"

if [$STRING1 == $STRING2]

then

echo "Both strings are the same"

fi

if [$STRING1 != $STRING2]

then

echo "Both strings are different"

fi

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators

 Boolean Operators

used to perform logical operations, eg logical AND (&&), logical OR (||), Not Equal
to (!).

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators#! /bin/bash

 read -p 'enter a value a: ‘ a

 read -p 'enter a value b: ‘ b

 if (($a == 'true' && $b == "true"))

 then

 echo "both are true"

 fi

 if (($a == "true" || $b == "true))

 then

echo "one is true"

 fi

 if ((! $b == "true))

 then

echo "b was initially true"

 fi

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators
 Bitwise Operators

used to perform logical operations, eg logical AND (&&), logical OR (||), Not Equal
to (!).

 #! /bin/bash

read -p "a: " a

read -p "b: " b

echo "bitwiseAND = $((a&b))"

echo "bitwiseOR = $((a|b))"

echo "bitwiseCOMPLEMENT = $((~a))"

echo "bitwiseLEFTSHIFT = $((a<<1))"

echo "bitwiseRIGHTSHIFT = $((a>>1))"

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators
 File Test Operators

File Test Operators - test a particular property of a file, such as;

 -b operator; checks whether a file is a block special file or not. if exist returns true.

 -c operator; checks whether a file is a character special file or not. if exist returns
true.

 -d operator; checks if the given directory exists or not. if exist returns true.

 -e operator; checks whether the given file exists or not. if exist returns true.

 -r operator; checks whether the given file has read permissions or not. if exist
returns true.

 -w operator; checks whether the given file has write permissions or not. if exist
returns true.

 -x operator; checks whether the given file has execute permissions or not. if exist
returns true.

 -s operator; checks the size of the given file. if size is greater than 0 it returns
true.

Transforming education through ICTTransforming learning research and working environments with ICT

Bash Operators

#! /bin/bash

 if [-b $1]

 then

echo "$1 is a block device"

 else

echo "$1 is not a block device"

 fi

 if [-d $2]

 then

echo "$2 is a directory"

 else

echo "$2 is not a directory"

 fi

 if [-e $3]

 then

echo "$3 file exists"

 else

echo "$3 file does not exists"

 fi

Transforming education through ICTTransforming learning research and working environments with ICT

User Input
 At times, you may want to input data and assign it to a variable directly while the

script is running.

 To achieve this, we use the built-in Bash command read.

 The reads only a single line from the Bash shell.

Syntax for reading user input is as follows;

read variable_name

Transforming education through ICTTransforming learning research and working environments with ICT

User Input
 Syntax for reading user input

#!/bin/bash

Read the user input

echo "Enter the user name: "

read first_name

echo "The Current User Name is $first_name"

echo

echo "Enter other users'names: "

read name1 name2 name3

echo "$name1, $name2, $name3 are the other users."

Transforming education through ICTTransforming learning research and working environments with ICT

User Input
 Syntax for reading user input using a prompt

#!/bin/bash

read -p "username:" user_var

echo "The username is: " $user_var

Transforming education through ICTTransforming learning research and working environments with ICT

If Statements
 a conditional statement, also known as conditional expression.

 an if statement executes a code when the given conditions are met or satisfied.

 if statement checks for the Boolean condition to evaluate as True or False.

 any operator that returns a True or False value can be used between two
conditions.

syntax of the statement

if [condition]

then

statement

fi

Transforming education through ICTTransforming learning research and working environments with ICT

If Statements
 Working with if-statements

#! /bin/bash

 read -p "enter value for a:"a

 read -p "enter value for b:"b

 if [$a -eq $b]

 then

echo "a equal to b"

 fi

Transforming education through ICTTransforming learning research and working environments with ICT

If-else Statements
 if the specified condition in the if statement is not valid, the else condition will be

executed.

 it is used when you specifically require an output irrespective of whether the
condition is satisfied or not.

 The syntax

if [condition]

then

statement

else

statement

fi

Transforming education through ICTTransforming learning research and working environments with ICT

If-else Statements
 Working with if-else statements

 #! /bin/bash

a=10

b=20

if [$a == $b]

then

echo "a and b are the same"

else

echo "a and b are not equal"

fi

Transforming education through ICTTransforming learning research and working environments with ICT

else-if ladder
 It is used when there are multiple conditions to be checked. If any of the condition

is satisfied, the instructions in that block is executed. It is used with or without an
else statement at the end.

 The syntax

if [condition1]

then

statement1

statement2

elif [condition2]

then

statement3

else

statement4

fi

Transforming education through ICTTransforming learning research and working environments with ICT

Scheduling scripts
 In Linux, a cron job allows us to schedule tasks that we want to run multiple times

a day, or on specific days and months.

 The general syntax of a cron job line in crontab is ;

* * * * * command_to_execute

The asterisks represent

Minute (0-59)

Hour (0 - 23)

Day of the month (1 - 31)

Month (1 - 12)

Day of the week (0 - 6) (0 is Sunday)

Transforming education through ICTTransforming learning research and working environments with ICT

 THANK YOU

www.kenet.or.ke
Jomo Kenyatta Memorial

Library, University of Nairobi
P. O Box 30244-00100, Nairobi.
0732 150 500 / 0703 044 500

support@kenet.or.ke / smacharia@kenet.or.ke

mailto:support@kenet.or.ke
mailto:rosure@kenet.or.ke

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

