GPU Cloud VMs
Contents
[hide]Preconfigured GPU appliances
KENET provides a set of preconfigured Virtual Machine appliances with the following codes:
- Quantum Espresso
- YAMBO
- SIESTA
- GROMACS
- Tensorflow
- PyTorch
To request for access please apply through this form: [1] The appliance requires no user configuration, and the above listed appliances will have the individual code ready with GPU support.
The codes can be run on the terminal directly, however, the SLURM job scheduler is also installed on the VM, and alternately, the codes can be run via the scheduler.
Gromacs GPU VM usage
In the Gromacs GPU vm, gromacs and mpi are available, to run gromacs, you can use the following:
$ mpirun -np 1 /usr/local/bin/gmx_mpi
Advanced usage with slurm:
to run gromacs in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
export OMP_NUM_THREADS=2
mpirun -np 1 gmx_mpi ...
give the file a name like job.mpi,
edit the last line to include your commands to gromacs, and submit with slurm:
sbatch test.mpi
Quantum Espresso GPU VM usage
In the QE GPU vm, quantum espresso and mpi are available, to run it, you can use the following:
$ mpirun -np 1 /usr/local/bin/pw.x
Advanced usage with slurm:
to run gromacs in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
mpirun -np 1 pw.x ...
give the file a name like job.mpi,
edit the last line to include your commands to pw.x, and submit with slurm:
sbatch test.mpi
YAMBO GPU VM usage
In the YAMBO GPU vm, yambo and mpi are available, to run yambo, you can use the following:
$ mpirun -np 1 /usr/local/bin/yambo
Advanced usage with slurm:
to run yambo in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
mpirun -np 1 yambo ...
give the file a name like job.mpi,
edit the last line to include your commands to yambo, and submit with slurm:
sbatch test.mpi
Up: HPC_Usage