Difference between revisions of "GPU Cloud VMs"
Line 99: | Line 99: | ||
sbatch test.mpi | sbatch test.mpi | ||
</code> | </code> | ||
+ | |||
+ | |||
+ | === Tensorflow GPU usage === | ||
+ | We will try out the Tensorflow MNIST example from the documentation: [https://www.tensorflow.org/datasets/keras_example] | ||
+ | After loggin in, there are instructions on how to activate the right environment: | ||
+ | <code bash> | ||
+ | $ conda activate tf | ||
+ | </code> | ||
+ | this environment is preconfigured with tensorflow and has CUDA support. Next is we have to get the data and code to run, starting with the tensorflow_dataset package, | ||
+ | <code bash> | ||
+ | $ pip3 install tensorflow_datasets | ||
+ | </code> | ||
+ | We can now attempt to run some code, place the following code in a plain text file, call it `example.py` | ||
+ | <code python> | ||
+ | import tensorflow as tf | ||
+ | import tensorflow_datasets as tfds | ||
+ | |||
+ | (ds_train, ds_test), ds_info = tfds.load( | ||
+ | 'mnist', | ||
+ | split=['train', 'test'], | ||
+ | shuffle_files=True, | ||
+ | as_supervised=True, | ||
+ | with_info=True, | ||
+ | ) | ||
+ | |||
+ | # training pipeline | ||
+ | def normalize_img(image, label): | ||
+ | """Normalizes images: `uint8` -> `float32`.""" | ||
+ | return tf.cast(image, tf.float32) / 255., label | ||
+ | |||
+ | ds_train = ds_train.map( | ||
+ | normalize_img, num_parallel_calls=tf.data.AUTOTUNE) | ||
+ | ds_train = ds_train.cache() | ||
+ | ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) | ||
+ | ds_train = ds_train.batch(128) | ||
+ | ds_train = ds_train.prefetch(tf.data.AUTOTUNE) | ||
+ | |||
+ | # Evaluation pipeline | ||
+ | ds_test = ds_test.map( | ||
+ | normalize_img, num_parallel_calls=tf.data.AUTOTUNE) | ||
+ | ds_test = ds_test.batch(128) | ||
+ | ds_test = ds_test.cache() | ||
+ | ds_test = ds_test.prefetch(tf.data.AUTOTUNE) | ||
+ | |||
+ | # Create and train the model: | ||
+ | model = tf.keras.models.Sequential([ | ||
+ | tf.keras.layers.Flatten(input_shape=(28, 28)), | ||
+ | tf.keras.layers.Dense(128, activation='relu'), | ||
+ | tf.keras.layers.Dense(10) | ||
+ | ]) | ||
+ | model.compile( | ||
+ | optimizer=tf.keras.optimizers.Adam(0.001), | ||
+ | loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), | ||
+ | metrics=[tf.keras.metrics.SparseCategoricalAccuracy()], | ||
+ | ) | ||
+ | |||
+ | model.fit( | ||
+ | ds_train, | ||
+ | epochs=6, | ||
+ | validation_data=ds_test, | ||
+ | ) | ||
+ | </code> | ||
+ | |||
+ | And now we can test it: | ||
+ | <code bash> | ||
+ | $ python example.py | ||
+ | ... | ||
+ | Epoch 1/6 | ||
+ | 469/469 [==============================] - 3s 2ms/step - loss: 0.3494 - sparse_categorical_accuracy: 0.9040 - val_loss: 0.1970 - val_sparse_categorical_accuracy: 0.9431 | ||
+ | Epoch 2/6 | ||
+ | 469/469 [==============================] - 1s 2ms/step - loss: 0.1655 - sparse_categorical_accuracy: 0.9530 - val_loss: 0.1394 - val_sparse_categorical_accuracy: 0.9576 | ||
+ | Epoch 3/6 | ||
+ | 469/469 [==============================] - 1s 2ms/step - loss: 0.1189 - sparse_categorical_accuracy: 0.9660 - val_loss: 0.1096 - val_sparse_categorical_accuracy: 0.9666 | ||
+ | Epoch 4/6 | ||
+ | 469/469 [==============================] - 1s 2ms/step - loss: 0.0915 - sparse_categorical_accuracy: 0.9736 - val_loss: 0.0993 - val_sparse_categorical_accuracy: 0.9695 | ||
+ | Epoch 5/6 | ||
+ | 469/469 [==============================] - 1s 2ms/step - loss: 0.0735 - sparse_categorical_accuracy: 0.9786 - val_loss: 0.0870 - val_sparse_categorical_accuracy: 0.9743 | ||
+ | Epoch 6/6 | ||
+ | 469/469 [==============================] - 1s 2ms/step - loss: 0.0599 - sparse_categorical_accuracy: 0.9827 - val_loss: 0.0775 - val_sparse_categorical_accuracy: 0.9769 | ||
+ | </code> | ||
+ | |||
+ | We have run tensorflow+Keras on the MNIST dataset, with a final accuract of 98%. | ||
Up: | Up: | ||
[[ HPC_Usage| HPC_Usage]] | [[ HPC_Usage| HPC_Usage]] |
Revision as of 14:48, 7 April 2025
Contents
[hide]Preconfigured GPU appliances
KENET provides a set of preconfigured Virtual Machine appliances with the following codes:
- Quantum Espresso
- YAMBO
- SIESTA
- GROMACS
- Tensorflow
- PyTorch
To request for access please apply through this form: [1] The appliance requires no user configuration, and the above listed appliances will have the individual code ready with GPU support.
The codes can be run on the terminal directly, however, the SLURM job scheduler is also installed on the VM, and alternately, the codes can be run via the scheduler.
Gromacs GPU VM usage
In the Gromacs GPU vm, gromacs and mpi are available, to run gromacs, you can use the following:
$ mpirun -np 1 /usr/local/bin/gmx_mpi
Advanced usage with slurm:
to run gromacs in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
export OMP_NUM_THREADS=2
mpirun -np 1 gmx_mpi ...
give the file a name like job.mpi,
edit the last line to include your commands to gromacs, and submit with slurm:
sbatch test.mpi
Quantum Espresso GPU VM usage
In the QE GPU vm, quantum espresso and mpi are available, to run it, you can use the following:
$ mpirun -np 1 /usr/local/bin/pw.x
Advanced usage with slurm:
to run gromacs in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
mpirun -np 1 pw.x ...
give the file a name like job.mpi,
edit the last line to include your commands to pw.x, and submit with slurm:
sbatch test.mpi
YAMBO GPU VM usage
In the YAMBO GPU vm, yambo and mpi are available, to run yambo, you can use the following:
$ mpirun -np 1 /usr/local/bin/yambo
Advanced usage with slurm:
to run yambo in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
mpirun -np 1 yambo ...
give the file a name like job.mpi,
edit the last line to include your commands to yambo, and submit with slurm:
sbatch test.mpi
Tensorflow GPU usage
We will try out the Tensorflow MNIST example from the documentation: [2]
After loggin in, there are instructions on how to activate the right environment:
$ conda activate tf
this environment is preconfigured with tensorflow and has CUDA support. Next is we have to get the data and code to run, starting with the tensorflow_dataset package,
$ pip3 install tensorflow_datasets
We can now attempt to run some code, place the following code in a plain text file, call it `example.py`
import tensorflow as tf
import tensorflow_datasets as tfds
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
# training pipeline
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.AUTOTUNE)
# Evaluation pipeline
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)
# Create and train the model:
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
model.fit(
ds_train,
epochs=6,
validation_data=ds_test,
)
And now we can test it:
$ python example.py
...
Epoch 1/6
469/469 [==============================] - 3s 2ms/step - loss: 0.3494 - sparse_categorical_accuracy: 0.9040 - val_loss: 0.1970 - val_sparse_categorical_accuracy: 0.9431
Epoch 2/6
469/469 [==============================] - 1s 2ms/step - loss: 0.1655 - sparse_categorical_accuracy: 0.9530 - val_loss: 0.1394 - val_sparse_categorical_accuracy: 0.9576
Epoch 3/6
469/469 [==============================] - 1s 2ms/step - loss: 0.1189 - sparse_categorical_accuracy: 0.9660 - val_loss: 0.1096 - val_sparse_categorical_accuracy: 0.9666
Epoch 4/6
469/469 [==============================] - 1s 2ms/step - loss: 0.0915 - sparse_categorical_accuracy: 0.9736 - val_loss: 0.0993 - val_sparse_categorical_accuracy: 0.9695
Epoch 5/6
469/469 [==============================] - 1s 2ms/step - loss: 0.0735 - sparse_categorical_accuracy: 0.9786 - val_loss: 0.0870 - val_sparse_categorical_accuracy: 0.9743
Epoch 6/6
469/469 [==============================] - 1s 2ms/step - loss: 0.0599 - sparse_categorical_accuracy: 0.9827 - val_loss: 0.0775 - val_sparse_categorical_accuracy: 0.9769
We have run tensorflow+Keras on the MNIST dataset, with a final accuract of 98%.
Up: HPC_Usage