Difference between revisions of "GPU Cloud VMs"
Line 16: | Line 16: | ||
and alternately, the codes can be run via the scheduler. | and alternately, the codes can be run via the scheduler. | ||
− | [[File:GROMACS_logo.png| | + | [[File:GROMACS_logo.png|350px]] |
=== Gromacs GPU VM usage === | === Gromacs GPU VM usage === | ||
Line 48: | Line 48: | ||
</code> | </code> | ||
− | [[File:Quantum_ESPRESSO_logo.jpg| | + | [[File:Quantum_ESPRESSO_logo.jpg|350px]] |
=== Quantum Espresso GPU VM usage === | === Quantum Espresso GPU VM usage === | ||
In the QE GPU vm, quantum espresso and mpi are available, to run it, you can use the following: | In the QE GPU vm, quantum espresso and mpi are available, to run it, you can use the following: | ||
Line 76: | Line 76: | ||
</code> | </code> | ||
− | [[File:yambo_logo_overlay.png| | + | [[File:yambo_logo_overlay.png|350px]] |
=== YAMBO GPU VM usage === | === YAMBO GPU VM usage === | ||
In the YAMBO GPU vm, yambo and mpi are available, to run yambo, you can use the following: | In the YAMBO GPU vm, yambo and mpi are available, to run yambo, you can use the following: | ||
Line 105: | Line 105: | ||
</code> | </code> | ||
− | [[File:TensorFlow_logo.svg.png| | + | [[File:TensorFlow_logo.svg.png|350px]] |
=== Tensorflow GPU VM usage === | === Tensorflow GPU VM usage === | ||
We will try out the Tensorflow MNIST example from the documentation: [https://www.tensorflow.org/datasets/keras_example] | We will try out the Tensorflow MNIST example from the documentation: [https://www.tensorflow.org/datasets/keras_example] | ||
Line 194: | Line 194: | ||
We have run tensorflow+Keras on the MNIST dataset, with a final accuract of 98%. | We have run tensorflow+Keras on the MNIST dataset, with a final accuract of 98%. | ||
− | [[File:Pytorch_logo.png| | + | [[File:Pytorch_logo.png|350px]] |
=== PyTorch GPU VM Usage === | === PyTorch GPU VM Usage === | ||
We will run the MNIST example from the PyTorch documentation available here: [https://github.com/pytorch/examples/tree/main/mnist]. Once you have logged in, there are instructions on how to activate the PyTorch Conda based virtualenv environment. | We will run the MNIST example from the PyTorch documentation available here: [https://github.com/pytorch/examples/tree/main/mnist]. Once you have logged in, there are instructions on how to activate the PyTorch Conda based virtualenv environment. |
Revision as of 11:45, 8 May 2025
Contents
[hide]Preconfigured GPU appliances
KENET provides a set of preconfigured Virtual Machine appliances with the following codes:
- Quantum Espresso
- YAMBO
- SIESTA
- GROMACS
- Tensorflow
- PyTorch
To request for access please apply through this form: [1] The appliance requires no user configuration, and the above listed appliances will have the individual code ready with GPU support.
The codes can be run on the terminal directly, however, the SLURM job scheduler is also installed on the VM, and alternately, the codes can be run via the scheduler.
Gromacs GPU VM usage
In the Gromacs GPU vm, gromacs and mpi are available, to run gromacs, you can use the following:
$ mpirun -np 1 /usr/local/bin/gmx_mpi
Advanced usage with slurm:
to run gromacs in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
export OMP_NUM_THREADS=2
mpirun -np 1 gmx_mpi ...
give the file a name like job.mpi,
edit the last line to include your commands to gromacs, and submit with slurm:
sbatch test.mpi
Quantum Espresso GPU VM usage
In the QE GPU vm, quantum espresso and mpi are available, to run it, you can use the following:
$ mpirun -np 1 /usr/local/bin/pw.x
Advanced usage with slurm:
to run gromacs in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
mpirun -np 1 pw.x ...
give the file a name like job.mpi,
edit the last line to include your commands to pw.x, and submit with slurm:
sbatch test.mpi
YAMBO GPU VM usage
In the YAMBO GPU vm, yambo and mpi are available, to run yambo, you can use the following:
$ mpirun -np 1 /usr/local/bin/yambo
Advanced usage with slurm:
to run yambo in the GPU vm with slurm, create a submission script with the following contents:
#!/bin/bash
##SBATCH --job-name="example-name"
##SBATCH --get-user-env
##SBATCH --output=_scheduler-stdout.txt
##SBATCH --error=_scheduler-stderr.txt
##SBATCH --nodes=1
##SBATCH --ntasks-per-node=1
##SBATCH --cpus-per-task=1
##SBATCH --time=23:58:20
##SBATCH --partition=jobs
mpirun -np 1 yambo ...
give the file a name like job.mpi,
edit the last line to include your commands to yambo, and submit with slurm:
sbatch test.mpi
Tensorflow GPU VM usage
We will try out the Tensorflow MNIST example from the documentation: [2]
After logging in, there are instructions on how to activate the right conda based virtualenv environment:
$ conda activate tf
this environment is preconfigured with tensorflow and has CUDA support. Next is we have to get the data and code to run, starting with the tensorflow_dataset package,
$ pip3 install tensorflow_datasets
We can now attempt to run some code, place the following code in a plain text file, call it `example.py`
import tensorflow as tf
import tensorflow_datasets as tfds
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
# training pipeline
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.AUTOTUNE)
# Evaluation pipeline
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)
# Create and train the model:
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
model.fit(
ds_train,
epochs=6,
validation_data=ds_test,
)
And now we can test it:
$ python example.py
...
Epoch 1/6
469/469 [==============================] - 3s 2ms/step - loss: 0.3494 - sparse_categorical_accuracy: 0.9040 - val_loss: 0.1970 -
val_sparse_categorical_accuracy: 0.9431
Epoch 2/6
469/469 [==============================] - 1s 2ms/step - loss: 0.1655 - sparse_categorical_accuracy: 0.9530 - val_loss: 0.1394 -
val_sparse_categorical_accuracy: 0.9576
Epoch 3/6
469/469 [==============================] - 1s 2ms/step - loss: 0.1189 - sparse_categorical_accuracy: 0.9660 - val_loss: 0.1096 -
val_sparse_categorical_accuracy: 0.9666
Epoch 4/6
469/469 [==============================] - 1s 2ms/step - loss: 0.0915 - sparse_categorical_accuracy: 0.9736 - val_loss: 0.0993 -
val_sparse_categorical_accuracy: 0.9695
Epoch 5/6
469/469 [==============================] - 1s 2ms/step - loss: 0.0735 - sparse_categorical_accuracy: 0.9786 - val_loss: 0.0870 -
val_sparse_categorical_accuracy: 0.9743
Epoch 6/6
469/469 [==============================] - 1s 2ms/step - loss: 0.0599 - sparse_categorical_accuracy: 0.9827 - val_loss: 0.0775 -
val_sparse_categorical_accuracy: 0.9769
We have run tensorflow+Keras on the MNIST dataset, with a final accuract of 98%.
PyTorch GPU VM Usage
We will run the MNIST example from the PyTorch documentation available here: [3]. Once you have logged in, there are instructions on how to activate the PyTorch Conda based virtualenv environment.
$ conda activate pt
Once this is activated, we can now retreive the python code for the example, place it in a directory and run it:
$ mkdir mnist # creating a working dir
$ cd mnist # changing directory to the working dir
$ wget https://raw.githubusercontent.com/pytorch/examples/refs/heads/main/mnist/main.py
and finally, we are ready to run it:
$ python main.py
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz
100.0%
Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw
Train Epoch: 1 [0/60000 (0%)] Loss: 2.277304
Train Epoch: 1 [640/60000 (1%)] Loss: 1.823465
...
Train Epoch: 14 [58880/60000 (98%)] Loss: 0.013244
Train Epoch: 14 [59520/60000 (99%)] Loss: 0.000718
Test set: Average loss: 0.0268, Accuracy: 9918/10000 (99%)
This code downloads some training MNIST data, runs a convolutional neural network based training, and gives a summary of the accuracy at the end 99%). There is no need to install PyTorch since its aready preconfigured in the `pt` environment.
Up: HPC_Usage